A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets

We propose a robust computational method for the coupled simulation of a compressible high-speed flow interacting with a highly flexible thin-shell structure. A standard Eulerian finite volume formulation on a fixed Cartesian mesh is used for the fluid, and a Lagrangian formulation based on subdivision finite elements on an unstructured mesh is used for the shell. The fluid-shell interface on the Cartesian mesh is tracked with level sets. The conservation laws at the interface are enforced by applying proper interface boundary conditions to the fluid and shell solvers at the beginning of each time step. The basic approach furnishes a general algorithm for explicit loose coupling of Lagrangian shell solvers with Cartesian grid-based Eulerian fluid solvers. The efficiency and robustness of the proposed approach is demonstrated with an airbag deployment simulation.

[1]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[2]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[3]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  M. Ortiz,et al.  Lagrangian finite element analysis of Newtonian fluid flows , 1998 .

[5]  M. Arienti,et al.  A level set approach to Eulerian-Lagrangian coupling , 2003 .

[6]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[7]  A. Pipkin The Relaxed Energy Density for Isotropic Elastic Membranes , 1986 .

[8]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[9]  D. Nguyen A Fully Conservative Ghost Fluid Method & Stiff Detonation Waves , 2002 .

[10]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[11]  Oscillatory Thermomechanical Instability of an Ultrathin Catalyst , 2003, Science.

[12]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[13]  Ravi Samtaney,et al.  Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws , 1994, Journal of Fluid Mechanics.

[14]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[15]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[16]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[17]  Ravi Samtaney,et al.  Hypervelocity Richtmyer–Meshkov instability , 1997 .

[18]  S. Mauch A Fast Algorithm for Computing the Closest Point and Distance Transform , 2000 .

[19]  Michael Aivazis,et al.  ASCI Alliance Center for Simulation of Dynamic Response in Materials FY 2000 Annual Report , 2000 .

[20]  Klaus-Jürgen Bathe,et al.  On finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[21]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[22]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[23]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[24]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[25]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[26]  Oliver A. McBryan,et al.  A numerical method for two phase flow with an unstable interface , 1981 .

[27]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[28]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[29]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[30]  P. Colella,et al.  A higher-order embedded boundary method for time-dependent simulation of hyperbolic conservation laws , 2000 .

[31]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[32]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[33]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[34]  M. Ortiz,et al.  The morphology and folding patterns of buckling-driven thin-film blisters , 1994 .

[35]  Julian C. Cummings,et al.  A Virtual Test Facility for the Simulation of Dynamic Response in Materials , 2002, The Journal of Supercomputing.