A temperature‐related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations

A new homogenization technique, the temperature-related Cauchy–Born (TCB) rule, is proposed in this paper with the consideration of the free energy instead of the potential energy. Therefore, temperature effects at the nanoscale can be investigated using continuum approximation with the implementation of the TCB rule. The TCB rule is verified via stress analyses of several crystalline solids. Temperature-related material instability is also studied. In addition, a new hierarchical multiscale method is developed through implementing the TCB rule into meshfree particle methods. Quasicontinuum meshfree particle simulations are conducted to investigate bending of nanobeams, crack propagation in nanoplates and a three-dimensional nanoindentation problem. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[2]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[3]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[4]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[5]  Ceder,et al.  Effect of lattice vibrations on the ordering tendencies in substitutional binary alloys. , 1994, Physical review. B, Condensed matter.

[6]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[7]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[8]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[9]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[10]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[11]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[12]  Ted Belytschko,et al.  Material stability analysis of particle methods , 2005, Adv. Comput. Math..

[13]  Michael Ortiz,et al.  Hierarchical modeling in the mechanics of materials , 2000 .

[14]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[15]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[16]  Ted Belytschko,et al.  A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes , 2003 .

[17]  Kyung K. Choi,et al.  Numerical method for shape optimization using meshfree method , 2002 .

[18]  Huajian Gao,et al.  Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.

[19]  R. LeSar,et al.  Finite-temperature defect properties from free-energy minimization. , 1989, Physical review letters.

[20]  Min Zhou,et al.  A new look at the atomic level virial stress: on continuum-molecular system equivalence , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  D. Srolovitz,et al.  Order-disorder transitions at and segregation to (001) Ni-Pt surfaces , 1993 .

[22]  Vivek B. Shenoy,et al.  Finite Temperature Quasicontinuum Methods , 1998 .

[23]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[24]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[25]  Jiun-Shyan Chen,et al.  Analysis of metal forming process based on meshless method , 1998 .

[26]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[27]  S. Xiao,et al.  Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites , 2006 .

[28]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[29]  R. P. Ingel,et al.  STRESS POINTS FOR TENSION INSTABILITY IN SPH , 1997 .

[30]  M. S. Sivakumar,et al.  Mechanics of Solids , 2008 .

[31]  X. Zeng,et al.  An extension of the quasicontinuum treatment of multiscale solid systems to nonzero temperature. , 2004, The Journal of chemical physics.

[32]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[33]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[34]  Richard Alan Lesar,et al.  Free-energy calculations in materials research , 2002 .

[35]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[36]  Huajian Gao,et al.  Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods , 2000 .

[37]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[38]  Mark A Fleming,et al.  Continuous meshless approximations for nonconvex bodies by diffraction and transparency , 1996 .