The Permutation in a Haystack Problem and the Calculus of Search Landscapes

The natural encoding for many search and optimization problems is the permutation, such as the traveling salesperson, vehicle routing, scheduling, assignment and mapping problems, among others. The effectiveness of a given mutation or crossover operator depends upon the nature of what the permutation represents. For some problems, it is the absolute locations of the elements that most directly influences solution fitness; while for others, element adjacencies or even element precedences are most important. Different permutation operators respect different properties. We aim to provide the genetic algorithm or metaheuristic practitioner with a framework enabling effective permutation search landscape analysis. To this end, we contribute a new family of optimization problems, the permutation in a haystack, that can be parameterized to the various types of permutation problem (e.g., absolute versus relative positioning). Additionally, we propose a calculus of search landscapes, enabling analysis of search landscapes through examination of local fitness rates of change. We use our approach to analyze the behavior of common permutation mutation operators on a variety of permutation in a haystack landscapes; and empirically validate the prescriptive power of the search landscape calculus via experiments with simulated annealing.

[1]  C. Reeves The Crossover Landscape for the Onemax Problem , 1996 .

[2]  Dirk Sudholt,et al.  Crossover speeds up building-block assembly , 2012, GECCO '12.

[3]  Vincent A. Cicirello,et al.  Profiling the Distance Characteristics of Mutation Operators for Permutation-Based Genetic Algorithms , 2013, FLAIRS Conference.

[4]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[5]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[6]  António Manuel Rodrigues Manso,et al.  A multiset genetic algorithm for the optimization of deceptive problems , 2013, GECCO '13.

[7]  Kenneth A. De Jong,et al.  An Analysis of the Effects of Neighborhood Size and Shape on Local Selection Algorithms , 1996, PPSN.

[8]  Stephen F. Smith,et al.  Modeling GA Performance for Control Parameter Optimization , 2000, GECCO.

[9]  S. Ronald,et al.  More distance functions for order-based encodings , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  Nebojsa Jojic,et al.  Efficient Ranking from Pairwise Comparisons , 2013, ICML.

[11]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[12]  H. Muhlenbein,et al.  Size of neighborhood more important than temperature for stochastic local search , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[13]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[14]  Christine L. Valenzuela,et al.  A Study of Permutation Operators for Minimum Span Frequency Assignment Using an Order Based Representation , 2001, J. Heuristics.

[15]  William C. Regli,et al.  An approach to a feature-based comparison of solid models of machined parts , 2002, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[16]  Timo Mantere,et al.  Solving, rating and generating Sudoku puzzles with GA , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  S. Ronald Distance functions for order-based encodings , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[18]  Vincent A. Cicirello,et al.  On the Design of an Adaptive Simulated Annealing Algorithm , 2007 .

[19]  Vincent A. Cicirello On the Effects of Window-Limits on the Distance Profiles of Permutation Neighborhood Operators , 2014, BICT.

[20]  Andrew W. Moore,et al.  Learning evaluation functions for global optimization , 1998 .

[21]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[22]  D. Romik The Surprising Mathematics of Longest Increasing Subsequences , 2015 .

[23]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[24]  Vincent A. Cicirello,et al.  Non-wrapping order crossover: an order preserving crossover operator that respects absolute position , 2006, GECCO.

[25]  Vicente Campos,et al.  Scatter Search vs. Genetic Algorithms , 2005 .

[26]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[27]  Kenneth Sörensen,et al.  Distance measures based on the edit distance for permutation-type representations , 2007, J. Heuristics.

[28]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[29]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[30]  Thomas Stützle,et al.  A review of metrics on permutations for search landscape analysis , 2007, Comput. Oper. Res..

[31]  Colm O'Riordan,et al.  Analysis of a triploid genetic algorithm over deceptive and epistatic landscapes , 2012, SIAP.

[32]  Jr. William Paul Swartz Automatic layout of analog and digital mixed macro/standard cell integrated circuits , 1993 .

[33]  Gustavo Reis,et al.  Cooperative and decomposable approaches on royal road functions: overcoming the random mutation hill-climber , 2009, GECCO.

[34]  Kuo-Chin Fan,et al.  Genetic-based search for error-correcting graph isomorphism , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[35]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[36]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[37]  Jean-Marc Delosme,et al.  Performance of a new annealing schedule , 1988, 25th ACM/IEEE, Design Automation Conference.Proceedings 1988..

[38]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[39]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.

[40]  James E. Smith,et al.  Self-Adaptation of Mutation Operator and Probability for Permutation Representations in Genetic Algorithms , 2010, Evolutionary Computation.

[41]  S. Ronald Finding multiple solutions with an evolutionary algorithm , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[42]  Rafael Martí,et al.  Context-Independent Scatter and Tabu Search for Permutation Problems , 2005, INFORMS J. Comput..

[43]  Michèle Sebag,et al.  Analysis of adaptive operator selection techniques on the royal road and long k-path problems , 2009, GECCO.

[44]  Jacques Lévy Véhel,et al.  Holder functions and deception of genetic algorithms , 1998, IEEE Trans. Evol. Comput..

[45]  Marina Meila,et al.  An Exponential Model for Infinite Rankings , 2010, J. Mach. Learn. Res..

[46]  Zongyan Xu,et al.  An Improved Genetic Algorithm for Vehicle Routing Problem , 2011, 2011 International Conference on Computational and Information Sciences.

[47]  Alexander Mendiburu,et al.  A Tunable Generator of Instances of Permutation-Based Combinatorial Optimization Problems , 2016, IEEE Transactions on Evolutionary Computation.

[48]  Kenneth Sörensen,et al.  Permutation distance measures for memetic algorithms with population management , 2005 .

[49]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[50]  Danushka Bollegala,et al.  RankDE: learning a ranking function for information retrieval using differential evolution , 2011, GECCO '11.

[51]  Adam Prügel-Bennett,et al.  On the Landscape of Combinatorial Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[52]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .