Optical, physical and structural studies of boro-zinc tellurite glasses

Abstract To investigate the modification effect of the modifier ZnO on boro-tellurite glass, a series of glasses with compositions 50B 2 O 3 –(50− x )ZnO– x TeO 2 have been prepared by conventional melt quenching technique. Amorphous nature of the samples was confirmed through X-ray diffraction technique. Optical absorption and IR structural studies are carried out on the glass system. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap ( E opt ) and Urbach energy decreases with an increase of ZnO content. Refractive index evaluated from E opt was found to increase with an increase of ZnO content. The compositional dependence of different physical parameters such as density, molar volume, oxygen packing density, optical basicity, have been analyzed and discussed. The IR studies showed that the structure of glass consists of TeO 4 , TeO 3 /TeO 3+1 , BO 3 , BO 4 and ZnO 4 units.

[1]  E. Culea,et al.  Structure of TeO2 · B2O3 glasses inferred from infrared spectroscopy and DFT calculations , 2008 .

[2]  A. Ghosh,et al.  A new family of lead–bismuthate glass with a large transmitting window , 2000 .

[3]  H. Moustafa,et al.  Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses , 2008 .

[4]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[5]  Toshinobu Yoko,et al.  Nonlinear Optical Properties of TeO2‐Based Glasses: MOx‐TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) Binary Glasses , 1995 .

[6]  M. Ingram,et al.  An interpretation of glass chemistry in terms of the optical basicity concept , 1976 .

[7]  R. El-Mallawany Theoretical and experimental IR spectra of binary rare earth tellurite glasses—1 , 1989 .

[8]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[9]  H. A. A. Sidek,et al.  Synthesis and optical properties of ZnO-TeO2 glass system , 2009 .

[10]  Q. Nie,et al.  Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system , 2009 .

[11]  M. Ingram,et al.  Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses , 1971 .

[12]  C. Hogarth,et al.  Optical absorption near the fundamental absorption edge in some vanadate glasses , 1983 .

[13]  A. Ammar,et al.  Infra-Red Spectra, Electron Spin Resonance Spectra, and Density of (TeO2)100−x–(WO3)x and (TeO2)100−x–(ZnCl2)x Glasses† , 1985 .

[14]  Yasser B. Saddeek,et al.  Effect of TeO2 on the elastic moduli of sodium borate glasses , 2004 .

[15]  M. Imaoka,et al.  Studies of the Glass-formation Range of Tellurite Systems , 1968 .

[16]  D. Ehrt,et al.  Structure of bismuth borate glasses , 2000 .

[17]  Venkatachalam Rajendran,et al.  Characterisation of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements , 2003 .

[18]  Y. N. Ahammed,et al.  Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity , 2001 .

[19]  E. Culea,et al.  The local structure of gadolinium vanado-tellurite glasses , 2008, Journal of Materials Science.

[20]  J. Rincón,et al.  Glass formation area and structure of glassy materials obtained from the ZnO-CdO-TeO2 ternary system , 2005 .

[21]  B. Chowdari,et al.  Studies on Ag2O.MxOy.TeO2 (MxOy = WO3, MoO3, P2O5 and B2O3) ionic conducting glasses , 1998 .

[22]  C. Hogarth,et al.  Infrared absorption spectroscopy of zinc borate and vanadium borate glasses , 1983 .

[23]  S. Sakka,et al.  Electronic oxide polarizability and optical basicity of simple oxides. I , 1996 .

[24]  D. N. Rao,et al.  Linear optical properties of niobium-based tellurite glasses , 2001 .