Signatures of ERS–Envisat Interferometric SAR Coherence and Phase of Short Vegetation: An Analysis in the Case of Maize Fields

Interferometric observations between the European Remote Sensing, ERS-2, synthetic aperture radar (SAR) and the Envisat Advanced SAR (ASAR) are unique since they are characterized by a short repeat-pass interval (28 min) and a perpendicular baseline of approximately 2 km. In vegetated areas, this configuration should preserve from strong temporal decorrelation and enhance the sensitivity of coherence and SAR interferometric (InSAR) phase to volumes with small heights. This assumption could be tested with the data acquired during the dedicated ERS-Envisat Tandem mission on October 15, 2007, over the Seeland region, Switzerland. Five maize fields and one sunflower field presented lower coherence and offsets of the interferometric phase, i.e. height, with respect to neighboring bare fields. To gain understanding on the interferometric signatures, the interferometric water cloud model was used to simulate coherence and InSAR height for the maize fields. Both the coherence and the InSAR height present clear dependence upon vegetation height and exhibit strong consistency. Simulations showed that the modeled coherence and InSAR height are most sensitive to the two-way attenuation and the temporal coherence of the vegetation. The best correspondence between the observed and modeled InSAR parameters was obtained with two-way attenuation values between 2 and 4 dB/m (corresponding to an extinction between 1 and 2 dB/m) and high temporal coherence of the vegetation (above 0.6), with this being due to the very stable conditions of the weather during the 28-min interval between image acquisitions.

[1]  Richard H. Grant,et al.  Corn Motion in the Wind During Senescence: I. Motion Characteristics , 1992 .

[2]  Christiane Schmullius,et al.  Large-scale mapping of boreal forest in Siberia , 2003 .

[3]  F. Baret,et al.  Sensitivity of gap fraction to maize architectural characteristics based on 4D model simulations , 2007 .

[4]  Juha Hyyppä,et al.  The seasonal behavior of interferometric coherence in boreal forest , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  C. Werner,et al.  PROCESSING STRATEGIES FOR PHASE UNWRAPPING FOR INSAR APPLICATIONS , 2002 .

[6]  Martti Hallikainen,et al.  Boreal forest coherence-based measures of interferometric pair suitability for operational stem volume retrieval , 2004, IEEE Geoscience and Remote Sensing Letters.

[7]  S. Quegan,et al.  Satellite-based radar mapping of British forest age and Net Ecosystem Exchange using ERS tandem coherence , 2007 .

[8]  Urs Wegmüller,et al.  ERS INSAR data for remote sensing hilly forested areas , 2000 .

[9]  Shane Cloude Dual-Baseline Coherence Tomography , 2007, IEEE Geoscience and Remote Sensing Letters.

[10]  Urs Wegmüller,et al.  Retrieval of vegetation parameters with SAR interferometry , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[12]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Shaun Quegan,et al.  Environmental effects on the interferometric repeat-pass coherence of forests , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Urs Wegmüller,et al.  Influence of geometrical factors on crop backscattering at C-band , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  T. Strozzi,et al.  SAR interferometric and differential interferometric processing chain , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[18]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Craig S. T. Daughtry,et al.  C-band backscattering from corn canopies , 1991 .

[20]  Urs Wegmüller,et al.  C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Urs Wegmüller,et al.  Observations, Modeling, and Applications of ERS-ENVISAT Coherence Over Land Surfaces , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  C. Prati,et al.  ERS-ENVISAT combination for interferometry and super-resolution , 2000 .

[23]  U. Wegmuller,et al.  Automated terrain corrected SAR geocoding , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[24]  F. Rocca,et al.  Generation of DEM with sub-metric vertical accuracy from 30' ERS-ENVISAT pairs , 2004 .

[25]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[26]  Maurizio Santoro,et al.  Tree height influence on ERS interferometric phase in boreal forest , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[28]  Martti Hallikainen,et al.  Feasibility of multi-temporal interferometric SAR data for stand-level estimation of boreal forest stem volume , 2003 .

[29]  T. Arkebauer,et al.  Hybrid-maize—a maize simulation model that combines two crop modeling approaches , 2004 .

[30]  C. Werner,et al.  GAMMA SAR AND INTERFEROMETRIC PROCESSING SOFTWARE , 2000 .

[31]  J. R. Kiniry,et al.  CERES-Maize: a simulation model of maize growth and development , 1986 .

[32]  Juha Hyyppä,et al.  Backscattering properties of boreal forests at the C- and X-bands , 1994, IEEE Trans. Geosci. Remote. Sens..

[33]  Maurice Borgeaud,et al.  The use of ERS-1/2 Tandem interferometric coherence in the estimation of agricultural crop heights , 2001, IEEE Trans. Geosci. Remote. Sens..

[34]  Xavier Blaes,et al.  Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images , 2003 .

[35]  María E. Otegui,et al.  Leaf area, light interception, and crop development in maize , 1996 .

[36]  Ahad Tavakoli,et al.  Microwave Propagation Constant for a Vegetation Canopy With Vertical Stalks , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Urs Wegmüller,et al.  DEM generation using ERS-ENVISAT interferometry , 2009 .

[38]  M. Otegui,et al.  Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation , 2001 .

[39]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Ballester Berman,et al.  Retrieval of biophysical parameters of agricultural crops using polarimetric sar interferometry , 2011 .

[41]  Juan M. Lopez-Sanchez,et al.  Indoor wide-band polarimetric measurements on maize plants: a study of the differential extinction coefficient , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Urs Wegmüller,et al.  Observing and Modeling Multifrequency Scattering of Maize During the Whole Growth Cycle , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Juan M. Lopez-Sanchez,et al.  Model Limitations and Parameter-Estimation Methods for Agricultural Applications of Polarimetric SAR Interferometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.