Nonasymptotic assisted distillation of quantum coherence

We characterize the operational task of environment-assisted distillation of quantum coherence under different sets of free operations when only a finite supply of copies of a given state is available. We first evaluate the one-shot assisted distillable coherence exactly, and introduce a semidefinite programming bound on it in terms of a smooth entropic quantity. We prove the bound to be tight for all systems in dimensions 2 and 3, which allows us to obtain computable expressions for the one-shot rate of distillation, establish an analytical expression for the best achievable fidelity of assisted distillation for any finite number of copies, and fully solve the problem of asymptotic zero-error assisted distillation for qubit and qutrit systems. Our characterization shows that all relevant sets of free operations in the resource theory of coherence have exactly the same power in the task of one-shot assisted coherence distillation, and furthermore resolves a conjecture regarding the additivity of coherence of assistance in dimension 3.

[1]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[2]  Colin P. Williams Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.

[3]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Kyomin Jung Markov Process , 2021, Encyclopedia of Machine Learning and Data Mining.

[5]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[6]  Graeme Smith,et al.  Useful States and Entanglement Distillation , 2017, IEEE Transactions on Information Theory.

[7]  Gerardo Adesso,et al.  Probabilistic Distillation of Quantum Coherence. , 2018, Physical review letters.

[8]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[9]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[10]  E. Rains RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.

[11]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[12]  Guang-Can Guo,et al.  Experimentally obtaining maximal coherence via assisted distillation process , 2017, 1702.06606.

[13]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[14]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[15]  Eric Chitambar,et al.  One-shot assisted concentration of coherence , 2018, Journal of Physics A: Mathematical and Theoretical.

[16]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[17]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[18]  R. Grone,et al.  Extremal correlation matrices , 1990 .

[19]  J. Christensen,et al.  A note on extreme positive definite matrices , 1979 .

[20]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[21]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[22]  Nilanjana Datta,et al.  General Theory of Environment-Assisted Entanglement Distillation , 2010, IEEE Transactions on Information Theory.

[23]  Zach DeVito,et al.  Opt , 2017 .

[24]  Robert W. Spekkens,et al.  Entanglement of assistance is not a bipartite measure nor a tripartite monotone , 2006 .

[25]  B. M. Fulk MATH , 1992 .

[26]  Chic , 2019, Proceedings of the International Symposium on Quality of Service.

[27]  Shao-Ming Fei,et al.  Coherence of Assistance and Regularized Coherence of Assistance , 2017 .

[28]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[29]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[30]  Armin Uhlmann,et al.  Roofs and Convexity , 2010, Entropy.

[31]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[32]  R. F. Werner,et al.  Quantum lost and found , 2002, quant-ph/0209025.

[33]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[34]  Xiongfeng Ma,et al.  One-Shot Coherence Dilution. , 2017, Physical review letters.

[35]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[36]  E. Chitambar Dephasing-covariant operations enable asymptotic reversibility of quantum resources , 2017, 1711.10606.

[37]  Rahul Jain,et al.  Quantum Communication Using Coherent Rejection Sampling. , 2017, Physical review letters.

[38]  G. Gour Quantum resource theories in the single-shot regime , 2016, 1610.04247.

[39]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[40]  Guang-Can Guo,et al.  Experimental Cyclic Interconversion between Coherence and Quantum Correlations. , 2017, Physical review letters.

[41]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[42]  Andrew G. Glen,et al.  APPL , 2001 .

[43]  Nilanjana Datta,et al.  One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.

[44]  G. Adesso,et al.  Assisted Distillation of Quantum Coherence. , 2015, Physical review letters.

[45]  Christopher King,et al.  Correcting quantum channels by measuring the environment , 2005, Quantum Inf. Comput..

[46]  Chi-Kwong Li,et al.  A Note on Extreme Correlation Matrices , 1994, SIAM J. Matrix Anal. Appl..

[47]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[48]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[49]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[50]  D. Bruß,et al.  Linking a distance measure of entanglement to its convex roof , 2010, 1006.3077.

[51]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[52]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[53]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[54]  William Matthews,et al.  On the Power of PPT-Preserving and Non-Signalling Codes , 2014, IEEE Transactions on Information Theory.

[55]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[56]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[57]  Maciej Lewenstein,et al.  Towards Resource Theory of Coherence in Distributed Scenarios , 2015, 1509.07456.

[58]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.