Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures.

[1]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[2]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[3]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Salomonson Demonstration of Instruments Enabling a Class to Examine the Fundus of the Eye and to Take Photographs of the Interior of the Eye , 1921, Proceedings of the Royal Society of Medicine.

[5]  Gregory M. Nielson,et al.  Scattered data modeling , 1993, IEEE Computer Graphics and Applications.

[6]  R. Zawadzki,et al.  Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. , 2008, Optics letters.

[7]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[8]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[9]  Scot S. Olivier,et al.  Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging , 2011, Biomedical optics express.

[10]  Lelia Adelina Paunescu,et al.  Tracking optical coherence tomography. , 2004, Optics letters.

[11]  Toco Y P Chui,et al.  Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. , 2013, Investigative ophthalmology & visual science.

[12]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. , 2005, Optics express.

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[15]  Austin Roorda,et al.  Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope. , 2006, Journal of biomedical optics.

[16]  Daniel X Hammer,et al.  Compact scanning laser ophthalmoscope with high-speed retinal tracker. , 2003, Applied optics.

[17]  Austin Roorda,et al.  Eye tracking with the adaptive optics scanning laser ophthalmoscope , 2010, ETRA.

[18]  Austin Roorda,et al.  Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy , 2005 .

[19]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[20]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[21]  Bernd Hamann,et al.  Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging , 2007, SPIE BiOS.

[22]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[23]  Robert J Zawadzki,et al.  Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[25]  L A RIGGS,et al.  Motions of the retinal image during fixation. , 1954, Journal of the Optical Society of America.

[26]  C K Hitzenberger,et al.  Dispersion effects in partial coherence interferometry: implications for intraocular ranging. , 1999, Journal of biomedical optics.

[27]  Bernd Hamann,et al.  Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. , 2009, Optics express.

[28]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[29]  David Williams,et al.  In vivo imaging of the human rod photoreceptor mosaic. , 2004, Optics letters.

[30]  Daniel X. Hammer,et al.  High resolution multimodal clinical ophthalmic imaging system , 2010, Optics express.

[31]  Barry Cense,et al.  Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. , 2009, Optics express.

[32]  Angelika Unterhuber,et al.  Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. , 2008, Optics express.

[33]  Robert J Zawadzki,et al.  Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging , 2010, British Journal of Ophthalmology.

[34]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[35]  Barry Cense,et al.  Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources. , 2009, Optics express.

[36]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[37]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[39]  Omer P. Kocaoglu,et al.  Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics , 2011, Biomedical optics express.

[40]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[41]  Ravi S. Jonnal,et al.  Coherence gating and adaptive optics in the eye , 2003, SPIE BiOS.

[42]  Robert J Zawadzki,et al.  Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy. , 2013, Investigative ophthalmology & visual science.

[43]  James G. Fujimoto,et al.  Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns , 2012, Biomedical optics express.

[44]  Robert J. Zawadzki,et al.  Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo , 2007 .

[45]  Abdul Ahad S. Awwal,et al.  Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications , 2006 .

[46]  Ravi S. Jonnal,et al.  Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics , 2011, Vision Research.

[47]  Michael D. Ober,et al.  Ophthalmic fundus imaging: today and beyond. , 2004, American journal of ophthalmology.

[48]  Robert J Zawadzki,et al.  New Directions in Ophthalmic Optical Coherence Tomography , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[49]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[50]  P. Artal,et al.  Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator , 2005, Vision Research.

[51]  Mei Chen,et al.  Correcting Motion Artifacts in Retinal Spectral Domain Optical Coherence Tomography via Image Registration , 2009, MICCAI.

[52]  Alfredo Dubra,et al.  Registration of 2D Images from Fast Scanning Ophthalmic Instruments , 2010, WBIR.

[53]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[54]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[55]  Maciej Wojtkowski,et al.  Ophthalmic imaging by spectral optical coherence tomography. , 2004, American journal of ophthalmology.

[56]  Maciej Wojtkowski,et al.  Real-time in vivo ophthalmic imaging by ultrafast spectral optical coherence tomography , 2003, SPIE BiOS.

[57]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[58]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[59]  Maciej Wojtkowski,et al.  High-speed optical coherence tomography: basics and applications. , 2010, Applied optics.

[60]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[61]  Masaaki Hanebuchi,et al.  High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. , 2013, American journal of ophthalmology.

[62]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[63]  Austin Roorda,et al.  Applications of Adaptive Optics Scanning Laser Ophthalmoscopy , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[64]  Kazuhiro Sasaki,et al.  Extended depth of focus adaptive optics spectral domain optical coherence tomography , 2012, Biomedical optics express.

[65]  Stephen A. Boppart,et al.  Computational adaptive optics for broadband optical interferometric tomography of biological tissue , 2012, Proceedings of the National Academy of Sciences.

[66]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[67]  Daniel X Hammer,et al.  Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. , 2008, Investigative ophthalmology & visual science.

[68]  Harald Sattmann,et al.  In-vivo dual-beam optical coherence tomography , 1994, Other Conferences.

[69]  Yifan Jian,et al.  Adaptive optics optical coherence tomography for in vivo mouse retinal imaging , 2013, Journal of biomedical optics.

[70]  Robert J Zawadzki,et al.  Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging. , 2006, Ophthalmology.

[71]  J L Keltner,et al.  Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies , 2011, Eye.

[72]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[73]  A. Fercher,et al.  Chapter 4 – Optical coherence tomography , 2002 .

[74]  A. Fercher,et al.  In vivo optical coherence tomography. , 1993, American journal of ophthalmology.

[75]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[76]  Harald Sattmann,et al.  In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level. , 2010, Optics express.

[77]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[78]  Isaac Amidror,et al.  Scattered data interpolation methods for electronic imaging systems: a survey , 2002, J. Electronic Imaging.

[79]  Austin Roorda,et al.  Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO , 2012, Biomedical optics express.

[80]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[81]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[82]  J. Duker,et al.  Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.

[83]  Shuichi Makita,et al.  Adaptive optics retinal scanner for one-micrometer light source. , 2010, Optics express.

[84]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[85]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[86]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[87]  W. Drexler,et al.  Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. , 2009, Optics express.

[88]  Bernd Hamann,et al.  Correction of eye-motion artifacts in AO-OCT data sets , 2011, BiOS.

[89]  R. Webb,et al.  Flying spot TV ophthalmoscope. , 1980, Applied optics.

[90]  A. Dubra,et al.  In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography , 2013, Biomedical optics express.

[91]  Robert J Zawadzki,et al.  Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. , 2008, Optics express.

[92]  Robert J Zawadzki,et al.  Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. , 2008, Investigative ophthalmology & visual science.

[93]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[94]  Bernd Hamann,et al.  In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions , 2012, Photonics West - Biomedical Optics.