Ultra-deep subwavelength periodic patterning through multilayered metamaterial microcavity

A designed multilayered metamaterial cavity formed by the metallo-dielectric multilayer structure (MDMS) and a nano Aluminum layer coated substrate is exploited to achieve the sub-20 nm patterns feature sizes at the wavelength of 248 nm with p-polarization. The filtering and SPP cavity resonance coupling provided by this MDMS cavity regime enable the SPP interference patterns with high uniformity and intensity output in the photoresist (PR) layer. Furthermore, compared with the conventional grating metal waveguide structure, this lithography system demonstrates the better stability of patterns period against the cavity thickness variation. The enhancement and the longitudinal extension of SPP localized field offered by the proposed cavity scheme will provide a potential way to obtain the lithography patterns with improved depth, contrast and perpendicularity.

[1]  Changtao Wang,et al.  Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. , 2009, Optics express.

[2]  Pei Wang,et al.  Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure. , 2006, Optics express.

[3]  Changtao Wang,et al.  Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns , 2009 .

[4]  Roderick R. Kunz,et al.  Review of technology for 157-nm lithography , 2001, IBM J. Res. Dev..

[5]  Simin Feng,et al.  Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms. , 2006, Optics express.

[6]  Alfred A. Mondelli,et al.  A review of ion projection lithography , 1998 .

[7]  W. Ge,et al.  Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity. , 2011, Optics express.

[8]  R. Blaikie,et al.  Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. , 2007, Optics express.

[9]  Michael C. McAlpine,et al.  Nanoimprint Lithography for Hybrid Plastic Electronics , 2003 .

[10]  Changtao Wang,et al.  Sub-diffraction-limited interference photolithography with metamaterials. , 2008, Optics express.

[11]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[12]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[13]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[14]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[15]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[16]  Changtao Wang,et al.  Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure , 2010 .

[17]  N. Fang,et al.  Sub-100 nm lithography using ultrashort wavelength of surface plasmons , 2004 .

[18]  R. H. Stulen,et al.  Extreme ultraviolet lithography , 1998 .

[19]  Zhaowei Liu,et al.  Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers , 2008 .

[20]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[21]  Christophe Vieu,et al.  Electron beam lithography: resolution limits and applications , 2000 .

[22]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.

[23]  R. Blaikie,et al.  Evanescent interferometric lithography. , 2001, Applied Optics.

[24]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[25]  Jerome P. Silverman,et al.  Challenges and progress in x-ray lithography , 1998 .

[26]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .