The inflammasome: Learning from bacterial evasion strategies.

[1]  G. Ruthel,et al.  Inflammasome Activation in Response to the Yersinia Type III Secretion System Requires Hyperinjection of Translocon Proteins YopB and YopD , 2015, mBio.

[2]  A. Tardivel,et al.  Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function , 2014, Proceedings of the National Academy of Sciences.

[3]  J. Celli,et al.  Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. , 2014, Cell host & microbe.

[4]  P. Li,et al.  Inflammatory caspases are innate immune receptors for intracellular LPS , 2014, Nature.

[5]  A. Koller,et al.  IQGAP1 Is Important for Activation of Caspase-1 in Macrophages and Is Targeted by Yersinia pestis Type III Effector YopM , 2014, mBio.

[6]  Vishva M. Dixit,et al.  Mechanisms and Functions of Inflammasomes , 2014, Cell.

[7]  D. Green,et al.  Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling , 2014, Proceedings of the National Academy of Sciences.

[8]  J. Bertin,et al.  Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death , 2014, Proceedings of the National Academy of Sciences.

[9]  D. Bumann,et al.  Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases , 2014, Nature.

[10]  Masahiro Yamamoto,et al.  Guanylate binding proteins promote caspase-11–dependent pyroptosis in response to cytoplasmic LPS , 2014, Proceedings of the National Academy of Sciences.

[11]  Russell G. Jones,et al.  Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome , 2014, The Journal of experimental medicine.

[12]  Katherine A. Fitzgerald,et al.  Unified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes , 2014, Cell.

[13]  Musa A. Hassan,et al.  Inflammasome Sensor NLRP1 Controls Rat Macrophage Susceptibility to Toxoplasma gondii , 2014, PLoS pathogens.

[14]  A. Sher,et al.  Dual Role for Inflammasome Sensors NLRP1 and NLRP3 in Murine Resistance to Toxoplasma gondii , 2014, mBio.

[15]  F. O'Gara,et al.  The SPI-1-like Type III secretion system: more roles than you think , 2014, Front. Plant Sci..

[16]  C. Sasakawa,et al.  Shigella Type III Secretion Protein MxiI Is Recognized by Naip2 to Induce Nlrc4 Inflammasome Activation Independently of Pkcδ , 2014, PLoS pathogens.

[17]  R. Medzhitov,et al.  The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition , 2014, Proceedings of the National Academy of Sciences.

[18]  Sunny Shin,et al.  Inflammasome-mediated cell death in response to bacterial pathogens that access the host cell cytosol: lessons from legionella pneumophila , 2013, Front. Cell. Infect. Microbiol..

[19]  Deming Zhao,et al.  the AIM2 inflammasome is involved in macrophage activation during infection with virulent Mycobacterium bovis strain. , 2013, The Journal of infectious diseases.

[20]  R. Medzhitov,et al.  Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. , 2013, Immunity.

[21]  M. Tomita,et al.  Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells , 2013, Nature.

[22]  A. Rudensky,et al.  Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation , 2013, Nature.

[23]  Sarah E. Ewald,et al.  NLRP1 Is an Inflammasome Sensor for Toxoplasma gondii , 2013, Infection and Immunity.

[24]  Daniel E. Zak,et al.  Cutting Edge: Mouse NAIP1 Detects the Type III Secretion System Needle Protein , 2013, The Journal of Immunology.

[25]  F. Sutterwala,et al.  Cutting Edge: Mycobacterium tuberculosis but Not Nonvirulent Mycobacteria Inhibits IFN-β and AIM2 Inflammasome–Dependent IL-1β Production via Its ESX-1 Secretion System , 2013, The Journal of Immunology.

[26]  J. Harton,et al.  Pyrin- and CARD-only Proteins as Regulators of NLR Functions , 2013, Front. Immunol..

[27]  D. Powell,et al.  Cytoplasmic LPS Activates Caspase-11: Implications in TLR4-Independent Endotoxic Shock , 2013, Science.

[28]  M. T. Wong,et al.  Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4 , 2013, Science.

[29]  F. Sutterwala,et al.  Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. , 2013, Immunity.

[30]  F. Shao,et al.  Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation , 2013, Proceedings of the National Academy of Sciences.

[31]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[32]  G. Núñez,et al.  K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. , 2013, Immunity.

[33]  R. Vance,et al.  Direct Proteolytic Cleavage of NLRP1B Is Necessary and Sufficient for Inflammasome Activation by Anthrax Lethal Factor , 2013, PLoS pathogens.

[34]  Sunny Shin,et al.  Caspase-11 Activation in Response to Bacterial Secretion Systems that Access the Host Cytosol , 2013, PLoS pathogens.

[35]  C. Sasakawa,et al.  The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. , 2013, Cell host & microbe.

[36]  Ashley M. Zehnder,et al.  IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase–driven tumors , 2013, Nature Medicine.

[37]  R. Vance,et al.  Recognition of bacteria by inflammasomes. , 2013, Annual review of immunology.

[38]  S. Winter,et al.  Manipulation of small Rho GTPases is a pathogen-induced process detected by Nod1 , 2013, Nature.

[39]  R. Flavell,et al.  Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila , 2013, Proceedings of the National Academy of Sciences.

[40]  Victoria Auerbuch,et al.  Impact of Host Membrane Pore Formation by the Yersinia pseudotuberculosis Type III Secretion System on the Macrophage Innate Immune Response , 2013, Infection and Immunity.

[41]  B. Cookson,et al.  The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. , 2012, Cell host & microbe.

[42]  Samuel I. Miller,et al.  Humanized TLR4/MD-2 Mice Reveal LPS Recognition Differentially Impacts Susceptibility to Yersinia pestis and Salmonella enterica , 2012, PLoS pathogens.

[43]  M. Lamkanfi,et al.  Toll or Interleukin-1 Receptor (TIR) Domain-containing Adaptor Inducing Interferon-β (TRIF)-mediated Caspase-11 Protease Production Integrates Toll-like Receptor 4 (TLR4) Protein- and Nlrp3 Inflammasome-mediated Host Defense against Enteropathogens* , 2012, The Journal of Biological Chemistry.

[44]  Christine E. Becker,et al.  TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria , 2012, Cell.

[45]  Kamila Belhocine,et al.  Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1 , 2012, Nature.

[46]  Yue Zhang,et al.  Interleukin-10 Induction Is an Important Virulence Function of the Yersinia pseudotuberculosis Type III Effector YopM , 2012, Infection and Immunity.

[47]  Haitao Wen,et al.  A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? , 2012, Nature Immunology.

[48]  R. Vance,et al.  Lethal inflammasome activation by a multi-drug resistant pathobiont upon antibiotic disruption of the microbiota , 2012, Nature Medicine.

[49]  S. Leppla,et al.  Anthrax Lethal Factor Cleavage of Nlrp1 Is Required for Activation of the Inflammasome , 2012, PLoS pathogens.

[50]  J. Magarian Blander,et al.  Beyond pattern recognition: five immune checkpoints for scaling the microbial threat , 2012, Nature Reviews Immunology.

[51]  G. Núñez,et al.  NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense , 2012, Nature Immunology.

[52]  Jinfeng Liu,et al.  Non-canonical inflammasome activation targets caspase-11 , 2011, Nature.

[53]  D. Monack,et al.  Elevated AIM2‐mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis , 2011, Cellular microbiology.

[54]  Hao Xu,et al.  The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus , 2011, Nature.

[55]  R. Vance,et al.  Innate immune recognition of bacterial ligands by NAIPs dictates inflammasome specificity , 2011, Nature.

[56]  S. Ghosh,et al.  Mitochondria in innate immune responses , 2011, Nature Reviews Immunology.

[57]  S. Akira,et al.  Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. , 2011, Immunity.

[58]  Michael J. Davis,et al.  Sensing prokaryotic mRNA signifies microbial viability and promotes immunity , 2011, Nature.

[59]  Denis Gris,et al.  Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling , 2011, Nature Immunology.

[60]  Haitao Wen,et al.  The inflammasome NLRs in immunity, inflammation, and associated diseases. , 2011, Annual review of immunology.

[61]  Andrew S. Houppert,et al.  YopK regulates the Yersinia pestis type III secretion system from within host cells , 2011, Molecular microbiology.

[62]  S. Thorslund,et al.  The RACK1 Signaling Scaffold Protein Selectively Interacts with Yersinia pseudotuberculosis Virulence Function , 2011, PloS one.

[63]  John Calvin Reed,et al.  Discovery of a Viral NLR Homolog that Inhibits the Inflammasome , 2011, Science.

[64]  J. Tschopp,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[65]  R. Vance,et al.  Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. , 2010, Cell host & microbe.

[66]  A. Montpetit,et al.  NALP1 Influences Susceptibility to Human Congenital Toxoplasmosis, Proinflammatory Cytokine Response, and Fate of Toxoplasma gondii-Infected Monocytic Cells , 2010, Infection and Immunity.

[67]  C. Marsh,et al.  Apoptosis-associated Speck-like Protein (ASC) Controls Legionella pneumophila Infection in Human Monocytes* , 2010, The Journal of Biological Chemistry.

[68]  A. Aderem,et al.  Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria , 2010, Nature Immunology.

[69]  W. Hardt,et al.  In Macrophages, Caspase-1 Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence of Flagellin , 2010, PloS one.

[70]  J. Roth,et al.  Gut inflammation provides a respiratory electron acceptor for Salmonella , 2010, Nature.

[71]  H. Andrews-Polymenis,et al.  A Rapid Change in Virulence Gene Expression during the Transition from the Intestinal Lumen into Tissue Promotes Systemic Dissemination of Salmonella , 2010, PLoS pathogens.

[72]  N. Hacohen,et al.  Mycobacterium tuberculosis protein ESAT‐6 is a potent activator of the NLRP3/ASC inflammasome , 2010, Cellular microbiology.

[73]  M. Huang,et al.  Inflammasome inhibition as a pathogenic stealth mechanism. , 2010, Cell host & microbe.

[74]  A. Aderem,et al.  Cutting Edge: Cytosolic Bacterial DNA Activates the Inflammasome via Aim2 , 2010, The Journal of Immunology.

[75]  F. Sutterwala,et al.  A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. , 2010, Cell host & microbe.

[76]  J. Sauer,et al.  Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. , 2010, Cell host & microbe.

[77]  V. Dixit,et al.  Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis , 2010, Proceedings of the National Academy of Sciences.

[78]  R. Carano,et al.  Host-Detrimental Role of Esx-1-Mediated Inflammasome Activation in Mycobacterial Infection , 2010, PLoS pathogens.

[79]  A. Iwasaki,et al.  Influenza virus activates inflammasomes through intracellular M2 channel , 2010, Nature Immunology.

[80]  V. Hornung,et al.  Critical functions of priming and lysosomal damage for NLRP3 activation , 2010, European journal of immunology.

[81]  Richard Bonneau,et al.  Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome , 2010, Proceedings of the National Academy of Sciences.

[82]  Y. Chien,et al.  The Salmonella SPI2 Effector SseI Mediates Long-Term Systemic Infection by Modulating Host Cell Migration , 2009, PLoS pathogens.

[83]  G. McFadden,et al.  Co-Regulation of NF-κB and Inflammasome-Mediated Inflammatory Responses by Myxoma Virus Pyrin Domain-Containing Protein M013 , 2009, PLoS pathogens.

[84]  M. Heikenwalder,et al.  The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. , 2009, Cell host & microbe.

[85]  R. Flavell,et al.  Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells , 2009, PLoS pathogens.

[86]  D. Portnoy,et al.  Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. , 2009, Cell host & microbe.

[87]  A. Zauberman,et al.  Yersinia pestis Endowed with Increased Cytotoxicity Is Avirulent in a Bubonic Plague Model and Induces Rapid Protection against Pneumonic Plague , 2009, PloS one.

[88]  Michael D. George,et al.  Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. , 2009, Cell host & microbe.

[89]  E. Alnemri,et al.  AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA , 2009, Nature.

[90]  Daniel R. Caffrey,et al.  AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC , 2009, Nature.

[91]  V. Dixit,et al.  Inflammasomes: guardians of cytosolic sanctity , 2009, Immunological reviews.

[92]  Sky W. Brubaker,et al.  Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin , 2008, Nature Immunology.

[93]  E. Brown,et al.  ESX‐1‐dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection , 2008, Cellular Microbiology.

[94]  K. Rock,et al.  Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization , 2008, Nature Immunology.

[95]  R. Medzhitov,et al.  Reduced Secretion of YopJ by Yersinia Limits In Vivo Cell Death but Enhances Bacterial Virulence , 2008, PLoS pathogens.

[96]  A. Aderem,et al.  Pseudomonas aeruginosa activates caspase 1 through Ipaf , 2008, Proceedings of the National Academy of Sciences.

[97]  F. Sutterwala,et al.  Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome , 2007, The Journal of experimental medicine.

[98]  A. Wullaert,et al.  The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation , 2007, Journal of cellular and molecular medicine.

[99]  Yao-Hui Sun,et al.  Injection of Flagellin into the Host Cell Cytosol by Salmonella enterica Serotype Typhimurium* , 2007, Journal of Biological Chemistry.

[100]  F. Martinon,et al.  Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration , 2007, Cell Death and Differentiation.

[101]  N. Volkmann,et al.  Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. , 2007, Molecular cell.

[102]  M. Aili,et al.  Minimal YopB and YopD translocator secretion by Yersinia is sufficient for Yop-effector delivery into target cells. , 2007, Microbes and infection.

[103]  David Miller,et al.  Critical Role for Cryopyrin/Nalp3 in Activation of Caspase-1 in Response to Viral Infection and Double-stranded RNA*> , 2006, Journal of Biological Chemistry.

[104]  S. Akira,et al.  Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response , 2006, Nature Immunology.

[105]  J. Tschopp,et al.  Caspase-1 Activation of Lipid Metabolic Pathways in Response to Bacterial Pore-Forming Toxins Promotes Cell Survival , 2006, Cell.

[106]  B. Cookson,et al.  In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted , 2006, Molecular microbiology.

[107]  Alan Aderem,et al.  Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf , 2006, Nature Immunology.

[108]  M. Swanson,et al.  Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection , 2006, The Journal of experimental medicine.

[109]  F. Martinon,et al.  Gout-associated uric acid crystals activate the NALP3 inflammasome , 2006, Nature.

[110]  V. Dixit,et al.  Cryopyrin activates the inflammasome in response to toxins and ATP , 2006, Nature.

[111]  W. Dietrich,et al.  Flagellin-Deficient Legionella Mutants Evade Caspase-1- and Naip5-Mediated Macrophage Immunity , 2006, PLoS pathogens.

[112]  D. Monack,et al.  Genome-Wide Screen for Salmonella Genes Required for Long-Term Systemic Infection of the Mouse , 2006, PLoS pathogens.

[113]  W. Dietrich,et al.  The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection , 2006, Nature Immunology.

[114]  W. Dietrich,et al.  Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin , 2006, Nature Genetics.

[115]  G. McFadden,et al.  A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. , 2005, Immunity.

[116]  Ferric C. Fang,et al.  Isocitrate Lyase (AceA) Is Required for Salmonella Persistence but Not for Acute Lethal Infection in Mice , 2005, Infection and Immunity.

[117]  P. Vandenabeele,et al.  Targeting Rac1 by the Yersinia Effector Protein YopE Inhibits Caspase-1-mediated Maturation and Release of Interleukin-1β* , 2004, Journal of Biological Chemistry.

[118]  Samuel I. Miller,et al.  Variation in lipid A structure in the pathogenic yersiniae , 2004, Molecular microbiology.

[119]  G. Dubyak,et al.  Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. , 2004, American journal of physiology. Cell physiology.

[120]  C. Médigue,et al.  Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[121]  F. Martinon,et al.  The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. , 2002, Molecular cell.

[122]  S. Iyoda,et al.  A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. , 2001, Microbial pathogenesis.

[123]  James C. Sacchettini,et al.  Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase , 2000, Nature.

[124]  Robert L. Lucas,et al.  Multiple Factors Independently RegulatehilA and Invasion Gene Expression in Salmonella enterica Serovar Typhimurium , 2000, Journal of bacteriology.

[125]  S. Miller,et al.  Salmonella typhimurium leucine‐rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems , 1999, Molecular microbiology.

[126]  J. Galán,et al.  A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion , 1999, Nature.

[127]  M. Swanson,et al.  Co‐ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp , 1999, Molecular microbiology.

[128]  S Falkow,et al.  The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[129]  H. Wolf‐Watz,et al.  YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation , 1998, Molecular microbiology.

[130]  K. Schuebel,et al.  S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells , 1998, Cell.

[131]  G. Cornelis,et al.  Role of YopP in Suppression of Tumor Necrosis Factor Alpha Release by Macrophages during YersiniaInfection , 1998, Infection and Immunity.

[132]  Junying Yuan,et al.  Murine Caspase-11, an ICE-Interacting Protease, Is Essential for the Activation of ICE , 1998, Cell.

[133]  J. Galán,et al.  The invasion‐associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell , 1997, Molecular microbiology.

[134]  K. Magnusson,et al.  YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane , 1997, Molecular microbiology.

[135]  K. Leung,et al.  YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice , 1990, Infection and immunity.

[136]  C. Alpuche-Aranda,et al.  This information is current as Activation and Cell Death Cells by Preventing Inflammasome Expression To Promote Its Survival in B Family CARD Domain Containing Protein 4 Downregulates Nod-like Receptor Salmonella , 2013 .

[137]  S. Minnich,et al.  A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. , 2007, Advances in experimental medicine and biology.

[138]  C. Janeway,et al.  Innate immune recognition. , 2002, Annual review of immunology.

[139]  C. Janeway Approaching the asymptote? Evolution and revolution in immunology. , 1989, Cold Spring Harbor symposia on quantitative biology.

[140]  Jürg Tschopp,et al.  Serveur Académique Lausannois SERVAL serval.unil.ch , 2022 .