Convexifying the Bethe Free Energy

The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable convergence and quality properties. However, empirically LBP still outperforms most of its convex variants in a variety of settings, as we also demonstrate here. Motivated by this fact we seek convexified free energies that directly approximate the Bethe free energy. We show that the proposed approximations compare favorably with state-of-the art convex free energy approximations.

[1]  Alan L. Yuille,et al.  CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation , 2002, Neural Computation.

[2]  Tamir Hazan,et al.  Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies , 2008, UAI.

[3]  Tommi S. Jaakkola,et al.  Approximate inference using conditional entropy decompositions , 2007, AISTATS.

[4]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[5]  Martin J. Wainwright,et al.  Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting , 2006, J. Mach. Learn. Res..

[6]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[7]  Tommi S. Jaakkola,et al.  Convergent Propagation Algorithms via Oriented Trees , 2007, UAI.

[8]  Jon Lee,et al.  The volume of relaxed Boolean-quadric and cut polytopes , 1997, Discret. Math..

[9]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[10]  Thomas P. Minka,et al.  Divergence measures and message passing , 2005 .

[11]  Tom Heskes,et al.  Fractional Belief Propagation , 2002, NIPS.

[12]  Tom Heskes,et al.  Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies , 2006, J. Artif. Intell. Res..

[13]  Payam Pakzad,et al.  Estimation and Marginalization Using the Kikuchi Approximation Methods , 2005, Neural Computation.

[14]  Hilbert J. Kappen,et al.  Approximate Inference and Constrained Optimization , 2002, UAI.

[15]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[16]  Yair Weiss,et al.  MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies , 2007, UAI.

[17]  Martin J. Wainwright,et al.  A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.

[18]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[19]  Wim Wiegerinck Approximations with Reweighted Generalized Belief Propagation , 2005, AISTATS.

[20]  Yee Whye Teh,et al.  Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation , 2001, UAI.

[21]  Max Welling,et al.  On the Choice of Regions for Generalized Belief Propagation , 2004, UAI.