Credible autocoding of convex optimization algorithms
暂无分享,去创建一个
Timothy Wang | Eric Feron | Marc Pantel | Didier Henrion | Pierre-Loïc Garoche | Romain Jobredeaux | E. Feron | D. Henrion | P. Garoche | Romain Jobredeaux | M. Pantel | Timothy E. Wang
[1] Stephen P. Boyd,et al. CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.
[2] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[3] Eric Feron,et al. From Design to Implementation: an Automated, Credible Autocoding Chain for Control Systems , 2013, ArXiv.
[4] Manfred Morari,et al. Certification aspects of the fast gradient method for solving the dual of parametric convex programs , 2013, Math. Methods Oper. Res..
[5] Timothy Wang,et al. Credible autocoding of control software , 2015 .
[6] Robert W. Floyd,et al. Assigning Meanings to Programs , 1993 .
[7] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[8] Hoyt Lougee,et al. SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND EQUIPMENT CERTIFICATION , 2001 .
[9] Michael J. Todd,et al. Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..
[10] Romain Jobredeaux. Formal verification of control software , 2015 .
[11] Timothy Wang,et al. A graphical environment to express the semantics of control systems , 2011, 1108.4048.
[12] Nikolai Kosmatov,et al. Frama-C - A Software Analysis Perspective , 2012, SEFM.
[13] M. Rinard. Credible Compilation , 1999 .
[14] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[15] Kim-Chuan Toh,et al. On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..
[16] J. Filliâtre,et al. ACSL: ANSI/ISO C Specification Language , 2008 .
[17] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[18] M. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .
[19] Lauretta O. Osho,et al. Axiomatic Basis for Computer Programming , 2013 .
[20] Lawrence Kent McGovern. Computational analysis of real-time convex optimization for control systems , 2000 .
[21] L.K. McGovern,et al. Requirements and hard computational bounds for real-time optimization in safety-critical control systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[22] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[23] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[24] Makoto Yamashita,et al. Latest Developments in the SDPA Family for Solving Large-Scale SDPs , 2012 .
[25] Marc Pantel,et al. Model-based formal specification of a DSL library for a qualified code generator , 2012, OCL '12.
[26] P. Gahinet,et al. A linear matrix inequality approach to H∞ control , 1994 .
[27] Edsger W. Dijkstra,et al. A Discipline of Programming , 1976 .
[28] A. M. Turing,et al. Checking a large routine , 1989 .
[29] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[30] Sharad Malik,et al. Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).
[31] Natarajan Shankar,et al. PVS: A Prototype Verification System , 1992, CADE.
[32] Edsger W. Dijkstra,et al. Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.
[33] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[34] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[35] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[36] Eric Feron,et al. A generic ellipsoid abstract domain for linear time invariant systems , 2012, HSCC '12.
[37] Yin Zhang,et al. A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..
[38] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[39] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[40] Jacek Gondzio,et al. Interior point methods 25 years later , 2012, Eur. J. Oper. Res..
[41] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[42] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[43] Shuzhong Zhang,et al. Quadratic maximization and semidefinite relaxation , 2000, Math. Program..
[44] Marc Bodson,et al. Evaluation of optimization methods for control allocation , 2001 .