Semi-global weak stabilization of bilinear Schrödinger equations

Abstract We consider a linear Schrodinger equation, on a bounded domain, with bilinear control, representing a quantum particle in an electric field (the control). Recently, Nersesyan proposed explicit feedback laws and proved the existence of a sequence of times ( t n ) n ∈ N for which the values of the solution of the closed loop system converge weakly in H 2 to the ground state. Here, we prove the convergence of the whole solution, as t → + ∞ . The proof relies on control Lyapunov functions and an adaptation of the LaSalle invariance principle to PDEs.

[1]  Vahagn Nersesyan,et al.  Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.

[2]  Georges Bastin,et al.  A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws , 2007, IEEE Transactions on Automatic Control.

[3]  Mario Sigalotti,et al.  The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent , 2008 .

[4]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[5]  Mazyar Mirrahimi,et al.  Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well , 2009, SIAM J. Control. Optim..

[6]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[7]  Mario Sigalotti,et al.  Generic controllability properties for the bilinear Schrödinger equation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[8]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[9]  Mazyar Mirrahimi,et al.  Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.

[10]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[11]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[12]  Mazyar Mirrahimi,et al.  Implicit Lyapunov control of finite dimensional Schrödinger equations , 2007, Syst. Control. Lett..

[13]  John M. Ball,et al.  Feedback stabilization of distributed semilinear control systems , 1979 .

[14]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[15]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[16]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..