Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models

[1]  H. Dobslaw,et al.  Seasonal effects of non-tidal oceanic mass shifts in observations with superconducting gravimeters , 2009 .

[2]  F. Lyard,et al.  High‐frequency non‐tidal ocean loading effects on surface gravity measurements , 2008 .

[3]  L. Timmen,et al.  Atmospheric Mass Flow Reduction for Terrestrial Absolute Gravimetry in the Fennoscandian Land Uplift Network , 2007 .

[4]  M. Rothacher,et al.  Estimation of diurnal polar motion terms using ring laser data , 2006 .

[5]  J. Hagedoorn,et al.  Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements , 2004 .

[6]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[7]  J. Boy,et al.  Reduction of surface gravity data from global atmospheric pressure loading , 2002 .

[8]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[9]  Stefan Emeis Meteorologie in Stichworten , 2000 .

[10]  Gerhard Jentzsch,et al.  Earth tides and ocean tidal loading , 1997 .

[11]  J. Hinderer,et al.  Effective barometric admittance and gravity residuals , 1995 .

[12]  J. Merriam,et al.  Atmospheric pressure and gravity , 1992 .

[13]  T. van Dam,et al.  Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements , 1987 .

[14]  R. Warburton,et al.  The influence of barometric‐pressure variations on gravity , 1977 .

[15]  W. Farrell Deformation of the Earth by surface loads , 1972 .