PTRcombiner: mining combinatorial regulation of gene expression from post-transcriptional interaction maps

BackgroundThe progress in mapping RNA-protein and RNA-RNA interactions at the transcriptome-wide level paves the way to decipher possible combinatorial patterns embedded in post-transcriptional regulation of gene expression.ResultsHere we propose an innovative computational tool to extract clusters of mRNA trans-acting co-regulators (RNA binding proteins and non-coding RNAs) from pairwise interaction annotations. In addition the tool allows to analyze the binding site similarity of co-regulators belonging to the same cluster, given their positional binding information. The tool has been tested on experimental collections of human and yeast interactions, identifying modules that coordinate functionally related messages.ConclusionsThis tool is an original attempt to uncover combinatorial patterns using all the post-transcriptional interaction data available so far. PTRcombiner is available at http://disi.unitn.it/~passerini/software/PTRcombiner/.

[1]  Uwe Ohler,et al.  Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. , 2011, Molecular cell.

[2]  Neil J. McKenna,et al.  Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators , 2002, Cell.

[3]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[4]  Pauli Miettinen,et al.  The Discrete Basis Problem , 2006, IEEE Transactions on Knowledge and Data Engineering.

[5]  Riccardo Zecchina,et al.  Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach , 2010, BMC Bioinformatics.

[6]  K. J. Hertel,et al.  Combinatorial Control of Exon Recognition* , 2008, Journal of Biological Chemistry.

[7]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[8]  A. Pasquinelli MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship , 2012, Nature Reviews Genetics.

[9]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[10]  Panayiotis V. Benos,et al.  ComiR: combinatorial microRNA target prediction tool , 2013, Nucleic Acids Res..

[11]  J. Keene,et al.  Mechanisms coordinating ELAV/Hu mRNA regulons. , 2013, Current opinion in genetics & development.

[12]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[13]  J. Valcárcel,et al.  Alternative pre-mRNA splicing: the logic of combinatorial control. , 2000, Trends in biochemical sciences.

[14]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[15]  Richard Bonneau,et al.  The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. , 2012, Molecular cell.

[16]  A. Ståhlberg,et al.  The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response , 2008, BMC Cell Biology.

[17]  Gabriele Sales,et al.  MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits (2012 update) , 2012, Nucleic Acids Res..

[18]  M. Zavolan,et al.  A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins , 2011, Nature Methods.

[19]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[20]  Peng Jiang,et al.  Computational Assessment of the Cooperativity between RNA Binding Proteins and MicroRNAs in Transcript Decay , 2013, PLoS Comput. Biol..

[21]  Yves Van de Peer,et al.  Analysis of a Gibbs sampler method for model-based clustering of gene expression data , 2008, Bioinform..

[22]  Y. van de Peer,et al.  Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast , 2011, Nucleic acids research.

[23]  Rolf Backofen,et al.  GraphClust: alignment-free structural clustering of local RNA secondary structures , 2012, Bioinform..

[24]  R. E. Page,et al.  New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior , 2012, Proceedings of the National Academy of Sciences.

[25]  Myriam Gorospe,et al.  Functional interplay between RNA-binding protein HuR and microRNAs. , 2012, Current protein & peptide science.

[26]  C. Mayr,et al.  Widespread Shortening of 3′UTRs by Alternative Cleavage and Polyadenylation Activates Oncogenes in Cancer Cells , 2009, Cell.

[27]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[28]  Hsien-Da Huang,et al.  miRTar: an integrated system for identifying miRNA-target interactions in human , 2011, BMC Bioinformatics.

[29]  Michael Q. Zhang,et al.  Identifying cooperativity among transcription factors controlling the cell cycle in yeast. , 2003, Nucleic acids research.

[30]  Robert Giegerich,et al.  Abstract shapes of RNA. , 2004, Nucleic acids research.

[31]  J. Keene RNA regulons: coordination of post-transcriptional events , 2007, Nature Reviews Genetics.

[32]  S. Srikantan,et al.  HuR recruits let-7/RISC to repress c-Myc expression. , 2009, Genes & development.

[33]  G. Church,et al.  Identifying regulatory networks by combinatorial analysis of promoter elements , 2001, Nature Genetics.

[34]  Daniel Herschlag,et al.  Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System , 2008, PLoS biology.

[35]  Jan Komorowski,et al.  Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3 , 2008, BMC Genomics.

[36]  Guido Sanguinetti,et al.  Large-scale learning of combinatorial transcriptional dynamics from gene expression , 2011, Bioinform..

[37]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[38]  M. Kiebler,et al.  Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function , 2010, Proceedings of the National Academy of Sciences.

[39]  Michael A. Langston,et al.  Combinatorial Genetic Regulatory Network Analysis Tools for High Throughput Transcriptomic Data , 2005, Systems Biology and Regulatory Genomics.

[40]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[41]  H. Craighead,et al.  Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells , 2013, Proceedings of the National Academy of Sciences.

[42]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[43]  Carla Bosia,et al.  A Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator , 2011, PloS one.

[44]  David J. Arenillas,et al.  MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model , 2011, BMC Bioinformatics.

[45]  Michael Q. Zhang,et al.  Identifying combinatorial regulation of transcription factors and binding motifs , 2004, Genome Biology.

[46]  J. Workman,et al.  Signals and combinatorial functions of histone modifications. , 2011, Annual review of biochemistry.

[47]  David Tollervey,et al.  Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs , 2009, Proceedings of the National Academy of Sciences.

[48]  Angela Re,et al.  CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse , 2010, BMC Bioinformatics.

[49]  Martin Kircher,et al.  Deep proteome and transcriptome mapping of a human cancer cell line , 2011, Molecular systems biology.

[50]  N. Rajewsky,et al.  Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. , 2011, Molecular cell.

[51]  Blaz Zupan,et al.  iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution , 2011, Journal of visualized experiments : JoVE.

[52]  Yibo Wu,et al.  GOSemSim: an R package for measuring semantic similarity among GO terms and gene products , 2010, Bioinform..

[53]  Fabrizio Costa,et al.  Fast Neighborhood Subgraph Pairwise Distance Kernel , 2010, ICML.

[54]  R. Backofen,et al.  GraphProt: modeling binding preferences of RNA-binding proteins , 2014, Genome Biology.

[55]  Julian König,et al.  Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions , 2012, Genome Biology.

[56]  Kathleen Marchal,et al.  Module networks revisited: computational assessment and prioritization of model predictions , 2009, Bioinform..

[57]  Y. Wang,et al.  Inferring regulatory networks. , 2008, Frontiers in bioscience : a journal and virtual library.

[58]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[59]  M. Zavolan,et al.  Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. , 2008, RNA.

[60]  Mihaela Zavolan,et al.  Comparative Analysis of mRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the miRNA Regulatory System , 2008, PloS one.

[61]  J. Ule,et al.  Protein–RNA interactions: new genomic technologies and perspectives , 2012, Nature Reviews Genetics.

[62]  Christoph Dieterich,et al.  doRiNA: a database of RNA interactions in post-transcriptional regulation , 2011, Nucleic Acids Res..

[63]  U. Landegren,et al.  Single molecule analysis of combinatorial splicing , 2010, Nucleic acids research.

[64]  Ralf Dahm,et al.  Dendritic Localization of the Translational Repressor Pumilio 2 and Its Contribution to Dendritic Stress Granules , 2006, The Journal of Neuroscience.

[65]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[66]  Ting Wang,et al.  Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation , 2013, Genome research.