Positive trigonometric polynomials for strong stability of difference equations

We follow a polynomial approach to analyse strong stability of continuous-time linear difference equations with several delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5.

[1]  Thomas Kailath,et al.  Generalized Bezoutians and families of efficient zero-location procedures , 1991 .

[2]  Dimitri Peaucelle,et al.  Ellipsoidal approximation of the stability domain of a polynomial , 2001, 2001 European Control Conference (ECC).

[3]  Jean-Michel Dion,et al.  On delay-dependent stability for linear neutral systems , 2003, Autom..

[4]  Jean B. Lasserre,et al.  A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..

[5]  Henk Nijmeijer,et al.  Strong Stability of Neutral Equations with an Arbitrary Delay Dependency Structure , 2009, SIAM J. Control. Optim..

[6]  Zdenek Hurák,et al.  Distributed stabilisation of spatially invariant systems: positive polynomial approach , 2013, Multidimens. Syst. Signal Process..

[7]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[8]  J. Craggs Applied Mathematical Sciences , 1973 .

[9]  Carlos J. Moreno,et al.  The zeros of exponential polynomials (I) , 1973 .

[10]  Jianhong Wu,et al.  Introduction to Functional Differential Equations , 2013 .

[11]  D. Henrion,et al.  Solving polynomial static output feedback problems with PENBMI , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[12]  Tomás Vyhlídal,et al.  An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type , 2005, Autom..

[13]  S. Barnett Polynomials and linear control systems , 1983 .

[14]  G. Styan,et al.  Historical Introduction: Issai Schur and the Early Development of the Schur Complement , 2005 .

[15]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[16]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[17]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[18]  Springer. Niculescu,et al.  Delay effects on stability , 2001 .

[19]  Tomás Vyhlídal,et al.  Synthesis of strongly stable state-derivative controllers for a time-delay system using constrained non-smooth optimization , 2010, IMA J. Math. Control. Inf..

[20]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[21]  Xin-Jian Zhu,et al.  Stability analysis of neutral systems with mixed delays , 2008, Autom..

[22]  Jack K. Hale,et al.  Strong stabilization of neutral functional differential equations , 2002 .

[23]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[24]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[25]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[26]  Denis Dochain,et al.  Sensitivity to Infinitesimal Delays in Neutral Equations , 2001, SIAM J. Control. Optim..

[27]  Michael A. Dritschel,et al.  On Factorization of Trigonometric Polynomials , 2004 .

[28]  Daniel B. Henry,et al.  Linear autonomous neutral functional differential equations , 1974 .

[29]  R. Martin,et al.  Stability analysis for neutral systems with mixed delays , 2007 .

[30]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[31]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.