Direct Measurement of Nonlinear Properties of Bipartite Quantum States

Nonlinear properties of quantum states, such as entropy or entanglement, quantify important physical resources and are frequently used in quantum information science. They are usually calculated from a full description of a quantum state, even though they depend only on a small number of parameters that specify the state. Here we extract a nonlocal and a nonlinear quantity, namely the Renyi entropy, from local measurements on two pairs of polarization entangled photons. We also introduce a “phase marking” technique which allows to select uncorrupted outcomes even with nondeterministic sources of entangled photons. We use our experimental data to demonstrate the violation of entropic inequalities. They are examples of a nonlinear entanglement witness and their power exceeds all linear tests for quantum entanglement based on all possible Bell-CHSH inequalities.

[1]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[2]  G. Castagnoli,et al.  Experimental evidence for bounds on quantum correlations. , 2003, Physical review letters.

[3]  Aaron J. Miller,et al.  Direct observation of photon pairs at a single output port of a beam-splitter interferometer , 2003 .

[4]  A. Colla,et al.  Effective fiber-coupling of entangled photons for quantum communication , 2003, quant-ph/0303126.

[5]  Y. Shih,et al.  Experimental entanglement concentration and universal Bell-state synthesizer , 2002, quant-ph/0209041.

[6]  M. Wolf,et al.  Conditional entropies and their relation to entanglement criteria , 2002, quant-ph/0202058.

[7]  B. Terhal Detecting quantum entanglement , 2001, Theor. Comput. Sci..

[8]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[9]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[10]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[11]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[12]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  M. Horodecki,et al.  Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[16]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[17]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[18]  P. Horodecki,et al.  Quantum redundancies and local realism , 1994 .

[19]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[20]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[21]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[22]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[23]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .