Satellite Sensors Measuring Atmospheric Water Vapour

Because of its importance in the atmosphere (for surface weather, energy balance of the climate system, and atmospheric chemistry), water vapour has been measured from space since the early days of satellite Earth observation by a variety of sensors and different techniques covering the altitude range from the surface up to the lower thermosphere region around 100 km. Information on the water content of the troposphere, where the bulk of atmospheric water resides, is available from nadir sounding (down-looking) instruments, widely used since the 1960s in the operational meteorological observation systems. Measurements of the small water vapour amounts of only a few water molecules per million air molecules in the upper troposphere and throughout the entire middle atmosphere require use of the limb sounding observation geometry, in emission or (solar, stellar, satellite-to-satellite) occultation, providing high sensitivity owing to the long emission or absorption path along the line-of-sight. Generally, limb scanning techniques allow to obtain vertically well resolved profile measurements of water vapour throughout the middle atmosphere with resolution of typically only a few kilometres, since altitude information is obtained from the relative pointing information of the scanning satellite sensors. Water, cloud, or aerosol absorption are often limiting factors of limb observations in the troposphere and lowermost stratosphere, depending on wavelength. The vertical resolution of a nadir measurement is determined by the frequency dependence of the water absorption in the observed set of spectral channels, and retrievals provide the (Jacobian weighted) average humidity over wider layers of typically several kilometres thickness. The penetration depth of a nadir sounder into the troposphere depends on the absorption in the observed spectral band(s), which is often dominated by cloud absorption but also depends on the amount of water vapour itself as a dryer atmosphere allows deeper penetration.

[1]  John C. Gille,et al.  Validation of water vapor results measured by the Limb Infrared Monitor of the Stratosphere Experiment on NIMBUS 7 , 1984 .

[2]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[3]  P. Bernath,et al.  Variability in HDO/H2O abundance ratios in the tropical tropopause layer , 2007 .

[4]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[5]  Fuzhong Weng,et al.  One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU) , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[6]  J. Zawodny,et al.  A revised water vapor product for the Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 data set , 2004 .

[7]  J. Wickert,et al.  Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP , 2006 .

[8]  James M. Russell,et al.  The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results , 2009 .

[9]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[10]  Kevin Bowman,et al.  Importance of rain evaporation and continental convection in the tropical water cycle , 2007, Nature.

[11]  Joseph J. Tansock,et al.  Overview of the SABER experiment and preliminary calibration results , 1999, Optics & Photonics.

[12]  K. Bowman,et al.  Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization , 2006 .

[13]  B. Connor,et al.  Measurements of O3, H2O and ClO in the middle atmosphere using the Millimeter-Wave Atmospheric Sounder (MAS) , 1996 .

[14]  Michael Buchwitz,et al.  Atmospheric water vapor amounts retrieved from GOME satellite data , 1999 .

[15]  J. Tuovinen,et al.  The Odin satellite - I. Radiometer design and test , 2003 .

[16]  D. Offermann,et al.  Global water vapour distribution in the upper troposphere and lower stratosphere during CRISTA 2 , 2009 .

[17]  J. Russell,et al.  Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results , 2009 .

[18]  Lieven Clarisse,et al.  Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder , 2009 .

[19]  C. Clerbaux,et al.  H 2 16 O and HDO measurements with IASI/MetOp , 2009 .

[20]  F. Taylor Infrared remote sensing of the middle atmosphere from satellites: The stratospheric and mesospheric sounder experiment 1978–1983 , 1987 .

[21]  P. Bernath,et al.  Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer. , 2005, Applied optics.

[22]  J. Wickert,et al.  GPS Radio Occultation with CHAMP and GRACE: Recent Results , 2006 .

[23]  D. Murtagh,et al.  An overview of the Odin atmospheric mission , 2002 .

[24]  C. Rodgers,et al.  Latitudinal and season variations of water vapour in the middle atmosphere , 1994 .

[25]  Alyn Lambert,et al.  MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O 3 , HNO 3 , N 2 O, H 2 O and relative humidity over ice: retrievals and comparison to MLS , 2009 .

[26]  Georg Heygster,et al.  Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Peter F. Bernath,et al.  Stratospheric abundances of water and methane based on ACE‐FTS measurements , 2005 .

[28]  Manuel López-Puertas,et al.  Water vapor distributions measured with the Michelson Interferometer for Passive Atmospheric Sounding on board Envisat (MIPAS/Envisat) , 2005 .

[29]  W. Read,et al.  Water vapor at the tropopause during the CRISTA 2 mission , 2002 .

[30]  Martin Riese,et al.  The CRISTA‐2 mission , 2002 .

[31]  M. Milz,et al.  Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere , 2007 .

[32]  Lance E. Christensen,et al.  Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation , 2007 .

[33]  Stefan Noel,et al.  Water vapour profiles from SCIAMACHY solar occultation measurements derived with an onion peeling approach , 2010 .

[34]  William G. Read,et al.  UARS Microwave Limb Sounder upper tropospheric humidity measurement: Method and validation , 2001 .

[35]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Stefan Noel,et al.  Preliminary results of GOME-2 water vapour retrievals and first applications in polar regions , 2008 .

[37]  James M. Russell,et al.  The solar occultation for ice experiment , 2009 .

[38]  Wesley A. Traub,et al.  Validation of measurements of water vapor from the Halogen Occultation Experiment (HALOE) , 1996 .

[39]  M. Guirlet,et al.  First results on GOMOS/ENVISAT , 2002 .

[40]  J. Russell,et al.  Validation of Polar Ozone and Aerosol Measurement (POAM) III version 4 stratospheric water vapor , 2006 .

[41]  D. Offermann,et al.  Regional and global trace gas distributions and inferred transports in the upper troposphere and lower stratosphere , 2005 .

[42]  John C. Gille,et al.  The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results , 1984 .

[43]  Tatsuya Yokota,et al.  Improved Limb Atmospheric Spectrometer (ILAS) for stratospheric ozone layer measurements by solar occultation technique , 1999 .

[44]  Larry W. Thomason,et al.  Comparison of Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 water vapor with balloon‐borne and space‐based instruments , 2004 .

[45]  Colette Brogniez,et al.  The Polar Ozone and Aerosol Measurement instrument , 1996 .

[46]  Eric S. Maddy,et al.  Vertical Resolution Estimates in Version 5 of AIRS Operational Retrievals , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Lance E. Christensen,et al.  Early validation analyses of atmospheric profiles from EOS MLS on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Y. Sasano,et al.  Characteristics and performance of the Improved Limb Atmospheric Spectrometer‐II (ILAS‐II) on board the ADEOS‐II satellite , 2006 .

[49]  C. Melsheimer,et al.  Comparison of total water vapor columns retrieved from satellite measurements: microwave radiances from AMSU-B and visible spectra from GOME/SCIAMACHY , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[50]  G. Barrot,et al.  GOMOS on Envisat: an overview , 2004 .

[51]  P. Lin,et al.  Analyses of FORMOSAT‐3/COSMIC humidity retrievals and comparisons with AIRS retrievals and NCEP/NCAR reanalyses , 2009 .

[52]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  G. Siebes,et al.  The Upper Atmosphere Research Satellite microwave limb sounder instrument , 1993 .

[54]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[55]  C. Piccolo,et al.  First results of MIPAS/ENVISAT with operational Level 2 code , 2004 .

[56]  Mattias Ekström,et al.  First Odin sub-mm retrievals in the tropical upper troposphere: humidity and cloud ice signals , 2006 .

[57]  N. Schneider,et al.  Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range , 2004 .

[58]  W. V. Snyder,et al.  Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements , 2007 .

[59]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[60]  C. Rodgers,et al.  Performance and early results from the stratospheric and mesospheric sounder (SAMS) on Nimbus 7 , 1981 .

[61]  Fuzhong Weng,et al.  NOAA operational hydrological products derived from the advanced microwave sounding unit , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Gerd K. Hartmann,et al.  The Millimeter Wave Atmospheric Sounder (MAS): a shuttle-based remote sensing experiment , 1992 .

[63]  N. Kämpfer,et al.  Error analysis of ClO, O3, and H2O abundance profiles retrieved from millimeter wave limb sounding measurements , 1993 .

[64]  Yuk L. Yung,et al.  The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS Space Shuttle Missions , 1996 .

[65]  Michael Buchwitz,et al.  Validation of SCIAMACHY AMC-DOAS water vapour columns , 2005 .

[66]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[67]  William G. Read,et al.  A new 147–56 hPa water vapor product from the UARS Microwave Limb Sounder , 2004 .

[68]  J. Pyle,et al.  The water vapour budget of the stratosphere studied using LIMS and SAMS satellite data , 1986 .

[69]  Chikako Takahashi,et al.  Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES , 2002, IEEE Transactions on Geoscience and Remote Sensing.

[70]  John J. Barnett,et al.  Remote Sensing of Atmospheric Structure and Composition by Pressure Modulator Radiometry from Space: The ISAMS Experiment on UARS , 1993, Optical Remote Sensing of the Atmosphere.

[71]  Colette Brogniez,et al.  POAM II retrieval algorithm and error analysis , 1997 .

[72]  R. P. Lowe,et al.  Atmospheric Chemistry Experiment (ACE): Mission overview. , 2005 .

[73]  E. Mahieu,et al.  Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment Version 3 data retrievals. , 2002, Applied optics.

[74]  N. Kämpfer,et al.  Latitudinal Distribution of Upper Stratospheric ClO as Derived from Space Borne Microwave Spectroscopy , 1996 .

[75]  Shepard A. Clough,et al.  Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection , 2004 .

[76]  L. W. Sterritt,et al.  The cryogenic limb array etalon spectrometer (CLAES) on UARS: Experiment description and performance , 1993 .