M‐quantile regression shrinkage and selection via the Lasso and Elastic Net to assess the effect of meteorology and traffic on air quality

In this work, we intersect data on size‐selected particulate matter (PM) with vehicular traffic counts and a comprehensive set of meteorological covariates to study the effect of traffic on air quality. To this end, we develop an M‐quantile regression model with Lasso and Elastic Net penalizations. This allows (i) to identify the best proxy for vehicular traffic via model selection, (ii) to investigate the relationship between fine PM concentration and the covariates at different M‐quantiles of the conditional response distribution, and (iii) to be robust to the presence of outliers. Heterogeneity in the data is accounted by fitting a B‐spline on the effect of the day of the year. Analytic and bootstrap‐based variance estimates of the regression coefficients are provided, together with a numerical evaluation of the proposed estimation procedure. Empirical results show that atmospheric stability is responsible for the most significant effect on fine PM concentration: this effect changes at different levels of the conditional response distribution and is relatively weaker on the tails. On the other hand, model selection allows to identify the best proxy for vehicular traffic whose effect remains essentially the same at different levels of the conditional response distribution.

[1]  T. Kneib,et al.  Generalized expectile regression with flexible response function , 2021, Biometrical journal. Biometrische Zeitschrift.

[2]  M. Ranalli,et al.  Spatiotemporal correlation of urban pollutants by long-term measurements on a mobile observation platform. , 2020, Environmental pollution.

[3]  C. Jiang,et al.  An elastic-net penalized expectile regression with applications , 2020, Journal of applied statistics.

[4]  T. Kneib,et al.  Adaptive semiparametric M-quantile regression , 2019, Econometrics and Statistics.

[5]  M. Ranalli,et al.  Using finite mixtures of M-quantile regression models to handle unobserved heterogeneity in assessing the effect of meteorology and traffic on air quality , 2019, Stochastic Environmental Research and Risk Assessment.

[6]  Man-Lai Tang,et al.  Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors , 2019, Commun. Stat. Simul. Comput..

[7]  Fengli Song,et al.  Adaptive elastic net-penalized quantile regression for variable selection , 2019, Communications in Statistics - Theory and Methods.

[8]  N. Salvati,et al.  Estimation and Testing in M‐quantile Regression with Applications to Small Area Estimation , 2018 .

[9]  Valentina Raponi,et al.  Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress , 2018, J. Multivar. Anal..

[10]  Yi Zhang,et al.  Variable selection in expectile regression , 2018 .

[11]  A. Aghamohammadi,et al.  Bayesian analysis of penalized quantile regression for longitudinal data , 2017 .

[12]  Thomas Kneib,et al.  Bayesian regularisation in geoadditive expectile regression , 2017, Stat. Comput..

[13]  Yan Yu,et al.  Estimation and variable selection for quantile partially linear single-index models , 2017, J. Multivar. Anal..

[14]  Mauro Bernardi,et al.  Bayesian quantile regression using the skew exponential power distribution , 2017, Comput. Stat. Data Anal..

[15]  Heng Lian,et al.  Mean and quantile boosting for partially linear additive models , 2016, Stat. Comput..

[16]  M. Ranalli,et al.  Functional exploratory data analysis for high‐resolution measurements of urban particulate matter , 2016, Biometrical journal. Biometrische Zeitschrift.

[17]  Maria Giovanna Ranalli,et al.  Modelling spatio-temporal air pollution data from a mobile monitoring station , 2016 .

[18]  Marco Alfò,et al.  Finite mixtures of quantile and M-quantile regression models , 2016, Statistics and Computing.

[19]  Jian Huang,et al.  Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression , 2015, 1509.02957.

[20]  Timo Schmid,et al.  Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression , 2015, Journal of the Royal Statistical Society. Series A,.

[21]  David Cappelletti,et al.  PMetro: Measurement of urban aerosols on a mobile platform , 2014 .

[22]  T. Kneib Beyond mean regression , 2013 .

[23]  V. Dukic,et al.  Modeling the Short-Term Effect of Traffic and Meteorology on Air Pollution in Turin with Generalized Additive Models , 2012 .

[24]  Dries F. Benoit,et al.  Bayesian adaptive Lasso quantile regression , 2012 .

[25]  Runze Li,et al.  Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension , 2012, Journal of the American Statistical Association.

[26]  Giampiero Marra,et al.  Practical variable selection for generalized additive models , 2011, Comput. Stat. Data Anal..

[27]  A. Belloni,et al.  ℓ[subscript 1]-penalized quantile regression in high-dimensional sparse models , 2011 .

[28]  Paul H. C. Eilers,et al.  Splines, knots, and penalties , 2010 .

[29]  Ruibin Xi,et al.  Bayesian regularized quantile regression , 2010 .

[30]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[31]  Monica Pratesi,et al.  Nonparametric M-quantile regression using penalised splines , 2009 .

[32]  Ji Zhu,et al.  L1-Norm Quantile Regression , 2008 .

[33]  H. Zou,et al.  Addendum: Regularization and variable selection via the elastic net , 2005 .

[34]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[35]  R. Koenker Quantile regression for longitudinal data , 2004 .

[36]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[37]  M. C. Jones Expectiles and M-quantiles are quantiles , 1994 .

[38]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[39]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[40]  T. Kneib,et al.  Model selection in semiparametric expectile regression , 2017 .

[41]  Rosamaria Salvatori,et al.  Bayesian Spatiotemporal Modeling of Urban Air Pollution Dynamics , 2014 .

[42]  Martin Slawski,et al.  The structured elastic net for quantile regression and support vector classification , 2012, Stat. Comput..

[43]  M. Pratesi,et al.  Constrained Small Area Estimators Based on M-quantile Methods , 2009 .

[44]  R. Koenker,et al.  Regression Quantiles , 2007 .

[45]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[46]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .