Low-energy oxygen ion beam induced chemical vapor deposition using methylsilane or dimethylsilane for the formation of silicon dioxide films

[1]  M. Kiuchi,et al.  Low-energy O+ ion beam induced chemical vapor deposition using tetraethyl orthosilicate for silicon dioxide film formation , 2022, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[2]  M. Kiuchi,et al.  Low-energy O+ ion beam induced chemical vapor deposition using hexamethyldisilane or hexamethyldisilazane for silicon dioxide film formation , 2021, AIP Advances.

[3]  R. Kometani,et al.  Miniaturization process of three-dimensional nanostructures fabricated by focused-ion-beam chemical vapor deposition , 2021, Japanese Journal of Applied Physics.

[4]  M. Kiuchi,et al.  Low-energy Ar+ and N+ ion beam induced chemical vapor deposition using hexamethyldisilazane for the formation of nitrogen containing SiC and carbon containing SiN films , 2021, PloS one.

[5]  M. Kiuchi,et al.  Production of low-energy SiCH3+ and SiC2H7+ ion beams for 3C-SiC film formation by selecting fragment ions from dimethylsilane , 2021 .

[6]  M. Kiuchi,et al.  Low-energy mass-selected ion beam deposition of silicon carbide with Bernas-type ion source using methylsilane , 2019, AIP Advances.

[7]  T. Higuchi,et al.  Microstructured SiOx thin films deposited from hexamethyldisilazane and hexamethyldisiloxane using atmospheric pressure thermal microplasma jet , 2019, Thin Solid Films.

[8]  M. Kiuchi,et al.  Low-energy mass-selected ion beam production of fragments from tetraethylorthosilicate for the formation of silicon dioxide film , 2018 .

[9]  M. Kiuchi,et al.  Low-energy mass-selected ion beam production of fragments produced from hexamethyldisiloxane for the formation of silicon oxide film , 2017 .

[10]  M. Kiuchi,et al.  Low-Energy Mass-Selected Ion Beam Production of Fragments Produced from Hexamethyldisilane for SiC Film Formation , 2016 .

[11]  A. Wrobel,et al.  Thin a‐SiC:H Films Formed by Remote Hydrogen Microwave Plasma CVD using Dimethylsilane and Trimethylsilane Precursors , 2014 .

[12]  Yujun Shi,et al.  Unraveling the complex chemistry using dimethylsilane as a precursor gas in hot wire chemical vapor deposition. , 2014, Physical chemistry chemical physics : PCCP.

[13]  B. Shokri,et al.  The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms , 2013 .

[14]  M. Kiuchi,et al.  Sputtering yields and surface modification of poly(methyl methacrylate) (PMMA) by low-energy Ar+/ ion bombardment with vacuum ultraviolet (VUV) photon irradiation , 2012 .

[15]  M. Nishitani,et al.  Experimental evaluation of CaO, SrO and BaO sputtering yields by Ne+ or Xe+ ions , 2011 .

[16]  M. Suemitsu,et al.  Growth Rate Anomaly in Ultralow-Pressure Chemical Vapor Deposition of 3C-SiC on Si(001) Using Monomethylsilane , 2011 .

[17]  F. Iacopi,et al.  Transition between amorphous and crystalline phases of SiC deposited on Si substrate using H3SiCH3 , 2009 .

[18]  R. Maboudian,et al.  Residual stress characterization of polycrystalline 3C-SiC films on Si(100) deposited from methylsilane , 2009 .

[19]  G. Cao,et al.  Characteristics of silicon oxide thin films prepared by sol electrophoretic deposition method using tetraethylorthosilicate as the precursor , 2009 .

[20]  N. Miyatake,et al.  Characteristics of monopole antenna plasmas for TEOS PECVD , 2008 .

[21]  J. Benedikt,et al.  Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet , 2008 .

[22]  A. Ohi,et al.  Heteroepitaxial growth of 3C–SiC film on Si(100) substrate by plasma chemical vapor deposition using monomethylsilane , 2007 .

[23]  K. Lang,et al.  Characterization of SiO2 thin films prepared by plasma-activated chemical vapour deposition , 2006 .

[24]  M. Hitchman,et al.  Remote AP‐PECVD of Silicon Dioxide Films from Hexamethyldisiloxane (HMDSO) , 2005 .

[25]  E. Amanatides,et al.  RF power effect on TEOS/O2 PECVD of silicon oxide thin films , 2005 .

[26]  Takao Suzuki,et al.  Ion-beam-induced chemical-vapor deposition of FePt and CoPt particles , 2005 .

[27]  M. Suemitsu,et al.  Adsorption kinetics of dimethylsilane at Si(0 0 1) , 2004 .

[28]  Takaomi Matsutani,et al.  Deposition of SiO2 films by low-energy ion-beam induced chemical vapor deposition using hexamethyldisiloxane , 2004 .

[29]  M. Kiuchi,et al.  Ion beam-induced chemical vapor deposition with hexamethyldisilane for hydrogenated amorphous silicon carbide and silicon carbonitride films , 2003 .

[30]  H. Nakayama,et al.  Catalytic CVD growth of Si–C and Si–C–O alloy films by using alkylsilane and related compounds , 2003 .

[31]  M. Suemitsu,et al.  Formation of quasi-single-domain 3C-SiC on nominally on-axis Si(001) substrate using organosilane buffer layer , 2003 .

[32]  S. Sibener,et al.  Low-temperature growth of epitaxial β-SiC on Si(100) using supersonic molecular beams of methylsilane , 2002 .

[33]  M. Pérez-Sánchez,et al.  Corrosion resistant ZrO2 thin films prepared at room temperature by ion beam induced chemical vapour deposition , 2002 .

[34]  M. Kiuchi,et al.  Growth of 3C–SiC(100) thin films on Si(100) by the molecular ion beam deposition , 2001 .

[35]  M. Kiuchi,et al.  Deposition of 3C-SiC films using ECR plasma of methylsilane , 2000 .

[36]  K. Yasui,et al.  Epitaxial growth of 3C-SiC films on Si substrates by triode plasma CVD using dimethylsilane , 2000 .

[37]  M. T. Kim Deposition kinetics of silicon dioxide from tetraethylorthosilicate by PECVD , 2000 .

[38]  Teruaki Motooka,et al.  Growth of Ultrathin Epitaxial 3C-SiC Films on Si(100) by Pulsed Supersonic Free Jets of CH3SiH3 , 1999 .

[39]  S. Ustin,et al.  Supersonic jet epitaxy of silicon carbide on silicon using methylsilane , 1998 .

[40]  H. D. Banerjee,et al.  Electron cyclotron resonance (ECR) plasma-enhanced chemical vapour deposition of silicon dioxide on strained-SiGe films using tetraethylorthosilicate , 1998 .

[41]  J. Sturm,et al.  Low temperature chemical vapor deposition growth of β-SiC on (100) Si using methylsilane and device characteristics , 1997 .

[42]  Giovanni Carlotti,et al.  Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate , 1997 .

[43]  Paul A. Kohl,et al.  Plasma‐Enhanced Chemical Vapor Deposition of Silicon Dioxide Deposited at Low Temperatures , 1995 .

[44]  Y. Ohshita Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas , 1995 .

[45]  S. Rushworth,et al.  Structural and electronic characterization of β-SiC films on Si grown from mono-methylsilane precursors , 1995 .

[46]  J. P. Espinós,et al.  Preparation of TiO2 and Al2O3 thin films by ion-beam induced chemical vapour deposition , 1994 .

[47]  J. Theil,et al.  Carbon content of silicon oxide films deposited by room temperature plasma enhanced chemical vapor deposition of hexamethyldisiloxane and oxygen , 1994 .

[48]  J. P. Espinós,et al.  Ion beam induced chemical vapor deposition for the preparation of thin film oxides , 1994 .

[49]  K. Ebihara,et al.  Silicon oxide film preparation by RF plasma-enhanced MOCVD using hexamethyldisiloxane , 1993 .

[50]  K. Okuyama,et al.  Gas-Phase Nucleation in an Atmospheric Pressure Chemical Vapor Deposition Process for SiO2 Films Using Tetraethylorthosilicate (TEOS) , 1992 .

[51]  F. Reidinger,et al.  Single‐crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition , 1992 .

[52]  Y. Yoshida,et al.  Hybrid Films Formed from Hexamethyldisiloxane and SiO by Plasma Process , 1991 .

[53]  C. Pai,et al.  Ion and chemical radical effects on the step coverage of plasma enhanced chemical vapor deposition tetraethylorthosilicate films , 1990 .