Bifurcation analysis of reaction–diffusion Schnakenberg model

Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.

[1]  David Iron,et al.  Stability analysis of Turing patterns generated by the Schnakenberg model , 2004, Journal of mathematical biology.

[2]  Michael J. Ward,et al.  The Existence and Stability of Asymmetric Spike Patterns for the Schnakenberg Model , 2002 .

[3]  Eckehard Schöll,et al.  Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations , 1997 .

[4]  Yan Li,et al.  Steady-state solution for a general Schnakenberg model☆ , 2011 .

[5]  Vicentiu D. Rădulescu,et al.  Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics , 2011 .

[6]  S. Mischler,et al.  Turing Instabilities at Hopf Bifurcation , 2009, J. Nonlinear Sci..

[7]  Matthias Winter,et al.  Stationary multiple spots for reaction–diffusion systems , 2008, Journal of mathematical biology.

[8]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[9]  Junjie Wei,et al.  Multiple bifurcation Analysis and Spatiotemporal Patterns in a 1-d Gierer-Meinhardt Model of Morphogenesis , 2010, Int. J. Bifurc. Chaos.

[10]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[11]  Wei Han,et al.  Hopf bifurcation analysis of a reaction–diffusion Sel'kov system , 2009 .

[12]  Junjie Wei,et al.  Diffusion-driven instability and bifurcation in the Lengyel-Epstein system , 2008 .

[13]  De Wit A,et al.  Chaotic Turing-Hopf mixed mode. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Chuang Xu,et al.  Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction–diffusion model , 2012 .

[15]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[16]  Tzy-Wei Hwang,et al.  Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions , 2005 .

[17]  Junjie Wei,et al.  Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of Cima chemical reactions , 2013 .

[18]  E Schöll,et al.  Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[22]  Junjie Wei,et al.  Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model , 2010 .

[23]  Junjie Wei,et al.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey , 2011 .

[24]  Junping Shi,et al.  On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .