Towards greener and more sustainable batteries for electrical energy storage.

[1]  V. Balaji Implications for Policy , 2017 .

[2]  M. Mench Flow Batteries I , 2015 .

[3]  Dipan Kundu,et al.  Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries , 2014, Nature Communications.

[4]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[5]  Lars Ole Valøen,et al.  Life Cycle Assessment of a Lithium‐Ion Battery Vehicle Pack , 2014 .

[6]  Jean-Marie Tarascon,et al.  Biomineralized α-Fe2O3: texture and electrochemical reaction with Li , 2014 .

[7]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[8]  Ki Tae Nam,et al.  Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. , 2013, Angewandte Chemie.

[9]  J. Gerbec,et al.  A High Capacity Calcium Primary Cell Based on the Ca–S System , 2013 .

[10]  Oladele A Ogunseitan,et al.  Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. , 2013, Environmental science & technology.

[11]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[12]  John Sullivan,et al.  Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. , 2012, Environmental science & technology.

[13]  J. Tarascon,et al.  Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. , 2012, Journal of the American Chemical Society.

[14]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[15]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[16]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[17]  In-Hwan Oh,et al.  A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. , 2012, Nano letters.

[18]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[19]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[20]  Gary W. Rubloff,et al.  Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries , 2012 .

[21]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[22]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[23]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .

[24]  A. J. Hunt,et al.  Elemental sustainability: Towards the total recovery of scarce metals , 2012 .

[25]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[26]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[27]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[28]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[29]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[30]  J. Tarascon,et al.  A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. , 2011, Nature materials.

[31]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[32]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[33]  J. Dahn,et al.  Study of the Reactivity of Na/Hard Carbon in Different Solvents and Electrolytes , 2011 .

[34]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[35]  John B. Goodenough,et al.  Rechargeable alkali-ion cathode-flow battery , 2011 .

[36]  Philippe Poizot,et al.  Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices , 2011 .

[37]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[38]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[39]  Tom Welton,et al.  Ionic liquids in Green Chemistry , 2011 .

[40]  Sylvie Grugeon,et al.  Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. , 2011, Analytical chemistry.

[41]  L. Gaines,et al.  A review of battery life-cycle analysis : state of knowledge and critical needs. , 2010 .

[42]  Reza Ghodssi,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[43]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  S. Vassilev,et al.  An overview of the chemical composition of biomass , 2010 .

[45]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[46]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[47]  J. Dewulf,et al.  Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings , 2010 .

[48]  M. Armand,et al.  Novel low temperature approaches for the eco-efficient synthesis of electrode materials for secondary Li-ion batteries , 2010 .

[49]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[50]  D. O M I N I,et al.  Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles , 2010 .

[51]  Abbas A. Akhil,et al.  Batteries for Large-Scale Stationary Electrical Energy Storage , 2010 .

[52]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[53]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[54]  O. Pokrovsky,et al.  Experimental approach of CO2 biomineralization in deep saline aquifers , 2009 .

[55]  Jean-Marie Tarascon,et al.  Nanomaterials: Viruses electrify battery research. , 2009, Nature nanotechnology.

[56]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[57]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[58]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[59]  Jean-Marie Tarascon,et al.  Eco-Efficient Synthesis of LiFePO4 with Different Morphologies for Li-Ion Batteries , 2009 .

[60]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[61]  Jean-Marie Tarascon,et al.  Towards sustainable and renewable systems for electrochemical energy storage. , 2008, ChemSusChem.

[62]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[63]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[64]  H. Thomas,et al.  A review of processes and technologies for the recycling of lithium-ion secondary batteries , 2008 .

[65]  Kyle W Meisterling,et al.  Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. , 2008, Environmental science & technology.

[66]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[67]  P. Daugherty Protein engineering with bacterial display. , 2007, Current opinion in structural biology.

[68]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[69]  G. Pistoia,et al.  Industrial applications of batteries : from cars to aerospace and energy storage , 2007 .

[70]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[71]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[72]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[73]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[74]  C. Dustmann Advances in ZEBRA batteries , 2004 .

[75]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[76]  M. Armand,et al.  Lithium-ion batteries: Runaway risk of forming toxic compounds , 2003, Nature.

[77]  Y. Sakurai,et al.  Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts , 2003 .

[78]  W. Sand,et al.  Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. , 2003, Applied microbiology and biotechnology.

[79]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[80]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[81]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[82]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[83]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[84]  Michael Grätzel,et al.  Powering the planet , 2000, Nature.

[85]  S. Bang,et al.  Microbiological precipitation of CaCO3 , 1999 .

[86]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[87]  J. Jolivet,et al.  De la solution à l'oxyde : condensation des cations en solution aqueuse Chimie de surface des oxydes , 1994 .

[88]  F. G. Ferris,et al.  Bacteriogenic mineral plugging , 1996 .

[89]  C. Edwards Microbiology of Extreme Environments , 1991 .

[90]  John B. Goodenough,et al.  Lithium insertion into Fe2(SO4)3 frameworks , 1989 .

[91]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[92]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[93]  A. R. Tilley,et al.  The sodium sulfur battery , 1985 .

[94]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[95]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[96]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[97]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[98]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.