Internal state variable plasticity-damage modeling of the copper tee-shaped tube hydroforming process

Abstract This paper presents a parametric finite element analysis using a history-dependent internal state variable model for a hydroforming process. Experiments were performed for the internal state variable model correlation and for validating a 2-in. copper tee hydroforming process simulation. The material model constants were determined from uniaxial stress–strain responses obtained from tensile tests on the tube's material. In the finite element simulations, the mesh and boundary conditions were integrated with the geometry and process parameters currently used in industry. The study provides insights for the variation of different process parameters (velocity and pressure profiles, and bucking system characteristics) related to the finished product.

[1]  Abdul-Ghani Olabi,et al.  Feasibility of multi-layered tubular components forming by hydroforming and finite element simulation , 2006 .

[2]  Mark F. Horstemeyer,et al.  The effect of materials testing modes on finite element simulation of hard machining via the use of internal state variable plasticity model coupled with experimental study , 2009 .

[3]  Muammer Koç Investigation of the effect of loading path and variation in material properties on robustness of the tube hydroforming process , 2003 .

[4]  Sang-Woo Kim,et al.  Bursting failure prediction in tube hydroforming using FLSD , 2009 .

[5]  A. Kocańda,et al.  An approach to process limitations in hydroforming of X-joints as based on formability evaluation , 2006 .

[6]  Taylan Altan,et al.  On the characteristics of tubular materials for hydroforming—experimentation and analysis , 2001 .

[7]  Douglas J. Bammann,et al.  Modeling Temperature and Strain Rate Dependent Large Deformations of Metals , 1990 .

[8]  Mark F. Horstemeyer,et al.  Numerical, experimental, nondestructive, and image analyses of damage; progression in cast A356 aluminium notch tensile bars , 2013 .

[9]  Seong-Chan Heo,et al.  Investigation on determination of loading path to enhance formability in tube hydroforming process using APDL , 2006 .

[10]  David L. McDowell Applications of Continuum Damage Mechanics to Fatigue and Fracture , 1997 .

[11]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[12]  Mark F. Horstemeyer,et al.  Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy , 2000 .

[13]  Edmund Chu,et al.  Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes , 2004 .

[14]  Suwat Jirathearanat,et al.  Adaptive FEM Simulation for Tube Hydroforming: a Geometry-Based Approach for Wrinkle Detection , 2001 .

[15]  Zengtao Chen,et al.  Damage-based finite-element modeling of tube hydroforming , 2009 .

[16]  Mark F. Horstemeyer,et al.  Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization , 2005 .

[17]  G. Ravichandran,et al.  Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length , 2005 .

[18]  Anil K. Sachdev,et al.  An analysis of localized necking in aluminium alloy tubes during hydroforming using a continuum damage model , 2007 .

[19]  Mark F. Horstemeyer,et al.  Cradle-to-grave simulation-based design incorporating multiscale microstructure-property modeling: Reinvigorating design with science , 2003 .

[20]  Douglas J. Bammann,et al.  An internal variable model of viscoplasticity , 1984 .

[21]  Lorenzo M. Smith,et al.  Finite element modeling of the tubular hydroforming process. Part 1. Strain rate-independent material model assumption , 2004 .

[22]  Mark F. Horstemeyer,et al.  A Numerical Parametric Investigation of Localization and Forming Limits , 2000 .

[23]  Suwat Jirathearanat,et al.  Hydroforming of Y-shapes—product and process design using FEA simulation and experiments , 2004 .

[24]  Taylan Altan,et al.  Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal , 2000 .

[25]  Taylan Altan,et al.  An overall review of the tube hydroforming (THF) technology , 2001 .

[26]  Heinz Palkowski,et al.  Variation of Residual Stresses in Drawn Copper Tubes , 2008 .

[27]  Suwat Jirathearanat,et al.  Virtual process development in tube hydroforming , 2004 .

[28]  Thomas B. Stoughton,et al.  An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming , 2004 .

[29]  Frédéric Barlat,et al.  Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions , 2006 .

[30]  M. S. J. Hashmi,et al.  Mechanical stresses in the multilayered T-branch hydroforming: numerical simulation , 2008, Int. J. Manuf. Technol. Manag..

[31]  Taylan Altan,et al.  Lubrication in tube hydroforming (THF): Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test , 2004 .

[32]  Mark F. Horstemeyer,et al.  Stress History Dependent Localization and Failure Using Continuum Damage Mechanics Concepts , 1997 .

[33]  E. B. Marin,et al.  On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage. , 2006 .

[34]  Mustafa A. Ahmetoglu,et al.  Tube hydroforming: current research, applications and need for training , 2000 .

[35]  Elias C. Aifantis,et al.  A model for finite-deformation plasticity , 1987 .

[36]  Khemais Saanouni,et al.  Numerical improvement of thin tubes hydroforming with respect to ductile damage , 2002 .

[37]  Mohamed Rachik,et al.  Modelling of the post-localization behaviour in tube hydroforming of low carbon steels , 2007 .

[38]  David L. McDowell,et al.  Modeling temperature and strain rate history effects in OFHC Cu , 1998 .

[39]  Taylan Altan,et al.  Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes , 2000 .

[40]  Sadakatsu Fuchizawa,et al.  Analysis of hydrostatic tube bulging with cylindrical die using static explicit FEM , 2003 .

[41]  Yuebin Guo,et al.  An internal state variable plasticity-based approach to determine dynamic loading history effects on material property in manufacturing processes , 2005 .

[42]  Robert J. Asaro,et al.  Toward a quantitative understanding of mechanical behavior of nanocrystalline metals , 2007 .

[43]  Gilmar Ferreira Batalha,et al.  Experimental and numerical simulation of tube hydroforming (THF) , 2005 .

[44]  Mahmoud Mosavi Mashhadi,et al.  Finite element simulation and experiment in tube hydroforming of unequal T shapes , 2006 .

[45]  Yeong-Maw Hwang,et al.  Analysis and finite element simulation of the tube bulge hydroforming process , 2002 .

[46]  Larsgunnar Nilsson,et al.  On constitutive modeling of aluminum alloys for tube hydroforming applications , 2005 .