Astrobiological considerations for the selection of the geological filters on the ExoMars PanCam instrument.

The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets.

[1]  R. Jaumann,et al.  Context for the ESA ExoMars rover: the Panoramic Camera (PanCam) instrument , 2006, International Journal of Astrobiology.

[2]  J. Bibring,et al.  Micromega/IR: Design and status of a near-infrared spectral microscope for in situ analysis of Mars samples , 2009 .

[3]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[4]  J. Korenaga Mantle mixing and continental breakup magmatism , 2004 .

[5]  A. Zinzi,et al.  Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature , 2009 .

[6]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[7]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[8]  S. Clegg,et al.  Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  William H. Farrand,et al.  Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity , 2007 .

[10]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[11]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[12]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[13]  H. Schmincke,et al.  Palagonite – a review , 2002 .

[14]  K. Herkenhoff,et al.  A First Look at the Mineralogy and Geochemistry of the MER-B Landing Site in Meridiani Planum , 2004 .

[15]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[16]  R. Kirk,et al.  The Imager for Mars Pathfinder experiment , 1997 .

[17]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[18]  Thorvaldur Thordarson,et al.  The Geology of Mars: Rootless volcanic cones in Iceland and on Mars , 2007 .

[19]  Astrobiological significance of minerals on Mars surface environment , 2005, physics/0512140.

[20]  P. Lucey,et al.  A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[21]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[22]  J. Mustard,et al.  Key scientific questions and key investigations from the first international conference on Martian phyllosilicates. , 2009, Astrobiology.

[23]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[24]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[25]  I. P. Wright,et al.  Record of fluid–rock interactions on Mars from the meteorite ALH84001 , 1994, Nature.

[26]  J. B. Adams,et al.  Comparison of Viking Lander Multispectral Images and Laboratory Reflectance Spectra of Terrestrial Samples , 1979 .

[27]  B. Ahlers,et al.  Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  G. Klingelhöfer,et al.  Identification of morphological biosignatures in Martian analogue field specimens using in situ planetary instrumentation. , 2008, Astrobiology.

[29]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[30]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[31]  Jillian F. Banfield,et al.  Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth , 2004, International Journal of Astrobiology.

[32]  Roger N. Clark,et al.  The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns , 1993 .

[33]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[34]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[35]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[36]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[37]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[38]  John Bridges,et al.  Evaporite mineral assemblages in the nakhlite (martian) meteorites , 2000 .

[39]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[40]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[41]  E. Cloutis,et al.  CLASSIFICATION OF IRON BEARING PHYLLOSILICATES BASED ON FERRIC AND FERROUS IRON ABSORPTION BANDS IN THE 400-1300 NM REGION , 2006 .

[42]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[43]  B. Clark Surviving the limits to life at the surface of Mars , 1998 .

[44]  G. Arnold,et al.  Near-infrared reflectance spectroscopy of bulk analog materials for planetary crust , 2001 .

[45]  G. Sigvaldason,et al.  Compositional variation in recent Icelandic tholeiites and the Kverkfjöll hot spot , 1974, Nature.

[46]  William H. Farrand,et al.  Rock spectral classes observed by the Spirit Rover's Pancam on the Gusev Crater Plains and in the Columbia Hills , 2008 .

[47]  G. Benedix,et al.  A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars , 2008 .

[48]  Janice L. Bishop,et al.  Multiple techniques for mineral identification on Mars: a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars , 2004 .

[49]  Wolfgang Fink,et al.  Exploration of hydrothermal targets on Mars , 2007 .

[50]  M. Chapman,et al.  The Geology of Mars: Mars interior layered deposits and terrestrial sub-ice volcanoes compared: observations and interpretations of similar geomorphic characteristics , 2007 .

[51]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[52]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[53]  Jean-Pierre Bibring,et al.  Phyllosilicates in the Mawrth Vallis region of Mars , 2007 .

[54]  Roger C Wiens,et al.  Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[55]  A. J. B. Anderson,et al.  Numeric examination of multivariate soil samples , 1971 .

[56]  B. Beauchamp,et al.  Silica chimneys formed by low-temperature brine spring discharge. , 2009, Astrobiology.

[57]  B. Rivard,et al.  The reflectance spectra of opal‐A (0.5–25 μm) from the Taupo Volcanic Zone: Spectra that may identify hydrothermal systems on planetary surfaces , 2004 .

[58]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[59]  Alfred S. McEwen,et al.  Icelandic analogs to Martian flood lavas , 2004 .