Distortion and the automorphism group of a shift

The set of automorphisms of a one-dimensional \shift $(X, \sigma)$ forms a countable, but often very complicated, group. For zero entropy shifts, it has recently been shown that the automorphism group is more tame. We provide the first examples of countable groups that cannot embed into the automorphism group of any zero entropy \shiftno. In particular, we show that the Baumslag-Solitar groups ${\rm BS}(1,n)$ and all other groups that contain exponentially distorted elements cannot embed into ${\rm Aut}(X)$ when $h_{\rm top}(X)=0$. We further show that distortion in nilpotent groups gives a nontrivial obstruction to embedding such a group in any low complexity shift.

[1]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[2]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[3]  Harvey B. Keynes,et al.  Generators for topological entropy and expansiveness , 1969, Mathematical systems theory.

[4]  Van Cyr,et al.  Nonexpansive Z(2)-Subdynamics and Nivat's Conjecture , 2012, 1208.4090.

[5]  Symbolic dynamics , 2008, Scholarpedia.

[6]  Stephen Meskin,et al.  Nonresidually finite one-relator groups , 1972 .

[7]  Douglas Lind,et al.  The automorphism group of a shift of finite type , 1988 .

[8]  The spacetime of a shift endomorphism , 2016, Transactions of the American Mathematical Society.

[9]  A. Gaglione,et al.  On Nilpotent Products of Cyclic Groups—Reexamined by the Commutator Calculus , 1975, Canadian Journal of Mathematics.

[10]  M. Hochman Non-expansive directions for ℤ2 actions , 2009, Ergodic Theory and Dynamical Systems.

[11]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[12]  Van Cyr,et al.  The spacetime of a shift automorphism , 2016 .

[13]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[14]  A. Maass,et al.  On automorphism groups of low complexity subshifts , 2015, Ergodic Theory and Dynamical Systems.

[15]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[16]  Van Cyr THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH: BEYOND TRANSITIVITY , 2015 .

[17]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[18]  Alexander Lubotzky,et al.  The word and Riemannian metrics on lattices of semisimple groups , 2000 .

[19]  Avinoam Mann,et al.  How Groups Grow , 2011 .

[20]  L. Saloff-Coste Analyse sur les groupes de Lie à croissance polynômiale , 1990 .

[21]  Hyman Bass,et al.  The Degree of Polynomial Growth of Finitely Generated Nilpotent Groups , 1972 .

[22]  Van Cyr,et al.  The automorphism group of a minimal shift of stretched exponential growth , 2015, 1509.08493.

[23]  Fred W. Roush,et al.  On the automorphism groups of subshifts , 1990 .