Heart sound classification using machine learning and phonocardiogram

This research pertains to classification of the heart sound using digital Phonocardiogram (PCG) signals targeted to screen for heart ailments. In this study, an existing variant of the decision tre...

[1]  S. Verma,et al.  Importance of Skewness and Kurtosis Statistical Tests for Outlier Detection and Elimination in Evaluation of Geochemical Reference Materials , 1998 .

[2]  Algirdas Maknickas,et al.  Recognition of normal–abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients , 2017, Physiological measurement.

[3]  Christophe Mues,et al.  An experimental comparison of classification algorithms for imbalanced credit scoring data sets , 2012, Expert Syst. Appl..

[4]  Kin Keung Lai,et al.  Multistage RBF neural network ensemble learning for exchange rates forecasting , 2008, Neurocomputing.

[5]  Syed Anas Imtiaz,et al.  Algorithms for Automatic Analysis and Classification of Heart Sounds–A Systematic Review , 2019, IEEE Access.

[6]  Waree Kongprawechnon,et al.  A framework for automatic heart sound analysis without segmentation , 2011, Biomedical engineering online.

[7]  Detection of pathological heart murmurs by feature extraction of phonocardiogram signals , 2017 .

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  S. Sinha,et al.  Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models , 2015, Front. Physiol..

[10]  K. V. Arya,et al.  Low-dose CT image reconstruction using gain intervention-based dictionary learning , 2018 .

[11]  Zhenyu Wu,et al.  An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics , 2018, IEEE Access.

[12]  Koushik Maharatna,et al.  A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits , 2016, Physiological measurement.

[13]  Philip Langley,et al.  Heart sound classification from unsegmented phonocardiograms , 2017, Physiological measurement.

[14]  Dimitrios I. Fotiadis,et al.  Heart Failure: Diagnosis, Severity Estimation and Prediction of Adverse Events Through Machine Learning Techniques , 2016, Computational and structural biotechnology journal.

[15]  Jafreezal Jaafar,et al.  FEATURE EXTRACTION USING MFCC , 2013 .

[16]  F Plesinger,et al.  Heart sounds analysis using probability assessment , 2017, Physiological measurement.

[17]  Ali Ghaffari,et al.  Home Search Collections Journals About Contact us My IOPscience Detection of pathological heart sounds , 2017 .

[18]  Masun Nabhan Homsi,et al.  Ensemble methods with outliers for phonocardiogram classification , 2017, Physiological measurement.

[19]  Gari D Clifford,et al.  Combining sparse coding and time-domain features for heart sound classification , 2017, Physiological measurement.

[20]  Shi-Wen Deng,et al.  Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps , 2016, Future Gener. Comput. Syst..

[21]  Qiao Li,et al.  Recent advances in heart sound analysis , 2017, Physiological measurement.

[22]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[23]  K. V. Arya,et al.  Fourth-order partial differential equations based anisotropic diffusion model for low-dose CT images , 2018, Modern Physics Letters B.

[24]  M. H. Shariat,et al.  Clinical Role of Dominant Frequency Measurements in Atrial Fibrillation Ablation - A Systematic Review. , 2017, Journal of atrial fibrillation.

[25]  Anurag Agarwal,et al.  DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds , 2017, Physiological measurement.

[26]  Abdul Ghaaliq Lalkhen,et al.  Clinical tests: sensitivity and specificity , 2008 .

[27]  Kavkirat Kaur,et al.  Computed tomography reconstruction on distributed storage using hybrid regularization approach , 2019, Modern Physics Letters B.