Integrative Levels of Granularity

In their book, Granular Computing: An Introduction, Bargiela and Pedrycz present a view that granular computing is an emerging conceptual and computing paradigm of information processing. A central notion is an information-processing pyramid with multiple levels. Different levels involve different types of processing. The lowest level concerns numeric processing, the intermediate level concerns larger information granules, and the highest level concerns symbol-based processing. This chapter examines the notion of integrative levels of granularity as a basis of granular computing. The notion of levels had been studied extensively in different branches of sciences and different fields of computer sciences. By extracting a set of common features and principles of integrative levels of granularity, the triarchic theory of granular computing is developed.

[1]  Philip P. Wiener Dictionary of the History of Ideas , 1980 .

[2]  C. Maria Keet,et al.  A Formal Theory of Granularity , 2008 .

[3]  M. Posner Foundations of cognitive science , 1989 .

[4]  George P. Conger,et al.  The Doctrine of Levels , 2022 .

[5]  J. Feibleman THEORY OF INTEGRATIVE LEVELS* , 1954, The British Journal for the Philosophy of Science.

[6]  桐山 伸也 "The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind," Marvin Minsky, Simon & Schuster, 2006(私のすすめるこの一冊,コーヒーブレイク) , 2007 .

[7]  Andrzej Bargiela,et al.  Toward a Theory of Granular Computing for Human-Centered Information Processing , 2008, IEEE Transactions on Fuzzy Systems.

[8]  F. Capra The Web of Life , 1996 .

[9]  Yao,et al.  Three Perspectives of Granular Computing , 2006 .

[10]  N. Verdier,et al.  Hierarchy: a short history of a word in Western thought , 2006 .

[11]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[12]  E. László The systems view of the world: The natural philosophy of the new developments in the sciences , 1975 .

[13]  Allen Newell,et al.  Reflections on the Knowledge Level , 1993, Artif. Intell..

[14]  Andrzej Bargiela,et al.  Human-Centric Information Processing Through Granular Modelling , 2009, Human-Centric Information Processing Through Granular Modelling.

[15]  H. Simon,et al.  The Organization of Complex Systems , 1977 .

[16]  Andrzej Bargiela,et al.  The roots of granular computing , 2006, 2006 IEEE International Conference on Granular Computing.

[17]  A. Novikoff THE CONCEPT OF INTEGRATIVE LEVELS AND BIOLOGY. , 1945, Science.

[18]  Jian Yu,et al.  A New Improved K-Means Algorithm with Penalized Term , 2007 .

[19]  Stanley D. Frank Remember everything you read : the Evelyn Wood seven-day speed reading and learning program , 1990 .

[20]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[21]  T. Allen,et al.  Hierarchy Theory: A Vision, Vocabulary, and Epistemology , 1996 .

[22]  Uri Leron,et al.  Structuring Mathematical Proofs. , 1983 .

[23]  Yiyu Yao,et al.  Granular Computing: basic issues and possible solutions , 2007 .

[24]  Howard Hunt Pattee,et al.  Hierarchy Theory: The Challenge of Complex Systems , 1973 .

[25]  Roberto Poli,et al.  The Basic Problem of the Theory of Levels of Reality , 2001 .

[26]  Yiyu Yao,et al.  A multiview approach for intelligent data analysis based on data operators , 2008, Inf. Sci..

[27]  S. Tsumoto,et al.  Rough Set Theory and Granular Computing , 2003 .

[28]  Linda Flower,et al.  Problem-Solving Strategies and the Writing Process , 1977, College English.

[29]  F. Craik Levels of processing: Past, present... and future? , 2002, Memory.

[30]  Yiyu Yao,et al.  A Partition Model of Granular Computing , 2004, Trans. Rough Sets.

[31]  Z. Pawlak Granularity of knowledge, indiscernibility and rough sets , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[32]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[33]  Ervin Laszlo,et al.  The systems view of the world , 1972 .

[34]  Yiyu Yao,et al.  The Art of Granular Computing , 2007, RSEISP.

[35]  Y. Yao Granular Computing : basic issues and possible solutions , 2000 .

[36]  Linda Flower,et al.  Problem-solving strategies for writing , 1981 .

[37]  Yiyu Yao,et al.  Structured Writing with Granular Computing Strategies , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[38]  S. Poirier Foundations of mathematics , 2007 .

[39]  Leonard Peikoff,et al.  Objectivism: The Philosophy of Ayn Rand , 1991 .

[40]  Yiyu Yao,et al.  Perspectives of granular computing , 2005, 2005 IEEE International Conference on Granular Computing.

[41]  Joan I. Heller,et al.  Knowledge structure and problem solving in physics , 1982 .

[42]  Leslie Lamport,et al.  How to Write a Proof , 1995 .

[43]  Yao,et al.  The rise of granular computing , 2008 .

[44]  L. Bertalanffy AN OUTLINE OF GENERAL SYSTEM THEORY , 1950, The British Journal for the Philosophy of Science.

[45]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[46]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[47]  M. Minsky The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind , 2006 .

[48]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[49]  Lars Skyttner General Systems Theory: Ideas and Applications , 2001 .

[50]  F. Craik,et al.  Levels of Pro-cessing: A Framework for Memory Research , 1975 .

[51]  JingTao Yao A Ten-year Review of Granular Computing , 2007 .

[52]  S. Salthe Evolving Hierarchical Systems: Their Structure and Representation , 1985 .

[53]  Gerald L. Young,et al.  Hierarchy and Central Place: Some Questions of More General Theory , 1978 .

[54]  Barbara Minto The Pyramid Principle: Logic in Writing and Thinking , 1981 .

[55]  L. Zadeh,et al.  Data mining, rough sets and granular computing , 2002 .

[56]  C. L. Foster Algorithms, abstraction and implementation : levels of detail in cognitive science , 1992 .

[57]  J. Hawkins,et al.  On Intelligence , 2004 .

[58]  Mel Friske Teaching Proofs: A Lesson from Software Engineering , 1985 .

[59]  D. Pumain Hierarchy in natural and social sciences , 2006 .

[60]  Zhiwei Lin,et al.  A Novel Algorithm for Counting All Common Subsequences , 2007 .

[61]  Jerzy W. Grzymala-Busse,et al.  Transactions on Rough Sets I , 2004, Lecture Notes in Computer Science.

[62]  C. Maria Keet A taxonomy of types of granularity , 2006, 2006 IEEE International Conference on Granular Computing.

[63]  T. D. Wilson,et al.  Philosophical foundations and research relevance: issues for information research , 2003, J. Inf. Sci..

[64]  Hung Son Nguyen,et al.  Granular Computing: a Rough Set Approach , 2001, Comput. Intell..

[65]  Jon F. Hueras,et al.  PASCAL with style : programming proverbs , 1979 .