A covalent approach for site-specific RNA labeling in Mammalian cells.

Advances in RNA research and RNA nanotechnology depend on the ability to manipulate and probe RNA with high precision through chemical approaches, both in vitro and in mammalian cells. However, covalent RNA labeling methods with scope and versatility comparable to those of current protein labeling strategies are underdeveloped. A method is reported for the site- and sequence-specific covalent labeling of RNAs in mammalian cells by using tRNA(Ile2) -agmatidine synthetase (Tias) and click chemistry. The crystal structure of Tias in complex with an azide-bearing agmatine analogue was solved to unravel the structural basis for Tias/substrate recognition. The unique RNA sequence specificity and plastic Tias/substrate recognition enable the site-specific transfer of azide/alkyne groups to an RNA molecule of interest in vitro and in mammalian cells. Subsequent click chemistry reactions facilitate the versatile labeling, functionalization, and visualization of target RNA.

[1]  Jun Yin,et al.  Phosphopantetheinyl transferase catalyzed site-specific protein labeling with ADP conjugated chemical probes. , 2009, Journal of the American Chemical Society.

[2]  Faisal A. Aldaye,et al.  Organization of Intracellular Reactions with Rationally Designed RNA Assemblies , 2011, Science.

[3]  Carolyn R Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[4]  U. Heinemann,et al.  Ribonuclease T1: Struktur, Funktion und Stabilität , 1991 .

[5]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[6]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[7]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[8]  Cody W. Geary,et al.  A single-stranded architecture for cotranscriptional folding of RNA nanostructures , 2014, Science.

[9]  R. Yount,et al.  Fingerprint patterns from laser-induced Azido photochemistry of spin-labeled photoaffinity ATP analogs in matrix-assisted laser desorption/ionization mass spectrometry , 1999, Journal of the American Society for Mass Spectrometry.

[10]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[11]  A. Herrmann,et al.  Selective transformations of complex molecules are enabled by aptameric protective groups. , 2012, Nature chemistry.

[12]  Bin Wu,et al.  Single β-Actin mRNA Detection in Neurons Reveals a Mechanism for Regulating Its Translatability , 2014, Science.

[13]  Paul A. Wiggins,et al.  RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. , 2014, ACS chemical biology.

[14]  J. Hollien,et al.  Fluorescent RNA labeling using self-alkylating ribozymes. , 2014, ACS chemical biology.

[15]  Paul F Agris,et al.  tRNA's wobble decoding of the genome: 40 years of modification. , 2007, Journal of molecular biology.

[16]  Reyna K. V. Lim,et al.  Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. , 2011, Accounts of chemical research.

[17]  T. Ha,et al.  Quantitative Fluorescent Labeling of Aldehyde-Tagged Proteins for Single-Molecule Imaging , 2012, Nature Methods.

[18]  A. Rentmeister,et al.  A chemo-enzymatic approach for site-specific modification of the RNA cap. , 2013, Angewandte Chemie.

[19]  Yang Yu,et al.  Metalloprotein design using genetic code expansion. , 2014, Chemical Society reviews.

[20]  Chuan He,et al.  Grand challenge commentary: RNA epigenetics? , 2010, Nature chemical biology.

[21]  Tsutomu Suzuki,et al.  Structural basis of tRNA agmatinylation essential for AUA codon decoding , 2011, Nature Structural &Molecular Biology.

[22]  O. Seitz,et al.  Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. , 2011, Angewandte Chemie.

[23]  Yoshio Umezawa,et al.  Imaging dynamics of endogenous mitochondrial RNA in single living cells , 2007, Nature Methods.

[24]  Qing Lin,et al.  Design of Spiro[2.3]hex-1-ene, a Genetically Encodable Double-Strained Alkene for Superfast Photoclick Chemistry , 2014, Journal of the American Chemical Society.

[25]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[26]  A. Herrmann,et al.  Fluoreszenzbildgebung der mRNA von Influenza‐H1N1 in lebenden infizierten Zellen durch FIT‐PNA mit einem einzigen Chromophor , 2011 .

[27]  Raven H. Huang,et al.  Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. , 2014, Nature chemical biology.

[28]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[29]  Tsutomu Suzuki,et al.  Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS , 2011, Nature Structural &Molecular Biology.

[30]  Dieter Söll,et al.  Natural expansion of the genetic code. , 2007, Nature chemical biology.

[31]  D. Schulz,et al.  Ein chemo‐enzymatischer Ansatz zur regiospezifischen Modifizierung der RNA‐Kappe , 2013 .

[32]  C. D. de Koster,et al.  Selective enrichment of azide-containing peptides from complex mixtures. , 2009, Journal of proteome research.

[33]  Kevin M. Dean,et al.  Advances in fluorescence labeling strategies for dynamic cellular imaging. , 2014, Nature chemical biology.

[34]  O. Nureki,et al.  Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase , 2009, Nature.

[35]  Taekjip Ha,et al.  Cytosolic Viral Sensor RIG-I Is a 5'-Triphosphate–Dependent Translocase on Double-Stranded RNA , 2009, Science.

[36]  Taekjip Ha,et al.  Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. , 2013, Journal of the American Chemical Society.

[37]  B. Armitage Imaging of RNA in live cells. , 2011, Current opinion in chemical biology.

[38]  U. Englisch,et al.  The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase. , 1997, Biochemistry.

[39]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[40]  Peter F. Stadler,et al.  tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..

[41]  Andrew S. Kohlway,et al.  A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea , 2009, Science.

[42]  Zhike Lu,et al.  m6A-dependent regulation of messenger RNA stability , 2013, Nature.

[43]  X. Zhuang,et al.  A single-molecule study of RNA catalysis and folding. , 2000, Science.

[44]  Chaoran Jing,et al.  Chemical tags for labeling proteins inside living cells. , 2011, Accounts of chemical research.

[45]  Xiaowei Zhuang,et al.  Single-molecule RNA folding. , 2005, Accounts of chemical research.

[46]  Xiang-Dong Fu,et al.  Towards a Splicing Code , 2004, Cell.

[47]  K. Johnsson Visualizing biochemical activities in living cells. , 2009, Nature chemical biology.

[48]  D. Söll,et al.  Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine , 2010, Proceedings of the National Academy of Sciences.

[49]  Tsutomu Suzuki,et al.  Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. , 2010, Nature chemical biology.

[50]  A. Jäschke,et al.  A modified dinucleotide for site-specific RNA-labelling by transcription priming and click chemistry. , 2014, Chemical communications.

[51]  C. Koehrer,et al.  The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. , 2008, Methods.

[52]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[53]  V. de Crécy-Lagard,et al.  Biosynthesis and function of posttranscriptional modifications of transfer RNAs. , 2012, Annual review of genetics.

[54]  Peter G. Schultz,et al.  Expanding the genetic code. , 2006 .

[55]  Hye Yoon Park,et al.  Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse , 2014, Science.

[56]  S. Jaffrey,et al.  RNA Mimics of Green Fluorescent Protein , 2011, Science.

[57]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[58]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[59]  J. Bujnicki,et al.  MODOMICS: a database of RNA modification pathways—2013 update , 2012, Nucleic Acids Res..