A covalent approach for site-specific RNA labeling in Mammalian cells.
暂无分享,去创建一个
Xiaosong Hu | Xiaosong Hu | W. Gong | Jiangyun Wang | Huifang Tian | Jing Shen | Fa-hui Li | Jianshu Dong | Jiasong Li | Jiangyun Wang | Weimin Gong | Fahui Li | Jianshu Dong | Jiasong Li | Jing Shen | Huifang Tian
[1] Jun Yin,et al. Phosphopantetheinyl transferase catalyzed site-specific protein labeling with ADP conjugated chemical probes. , 2009, Journal of the American Chemical Society.
[2] Faisal A. Aldaye,et al. Organization of Intracellular Reactions with Rationally Designed RNA Assemblies , 2011, Science.
[3] Carolyn R Bertozzi,et al. Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.
[4] U. Heinemann,et al. Ribonuclease T1: Struktur, Funktion und Stabilität , 1991 .
[5] Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.
[6] J. Steitz,et al. The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.
[7] Juewen Liu,et al. Functional nucleic acid sensors. , 2009, Chemical reviews.
[8] Cody W. Geary,et al. A single-stranded architecture for cotranscriptional folding of RNA nanostructures , 2014, Science.
[9] R. Yount,et al. Fingerprint patterns from laser-induced Azido photochemistry of spin-labeled photoaffinity ATP analogs in matrix-assisted laser desorption/ionization mass spectrometry , 1999, Journal of the American Society for Mass Spectrometry.
[10] Peter G Schultz,et al. Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.
[11] A. Herrmann,et al. Selective transformations of complex molecules are enabled by aptameric protective groups. , 2012, Nature chemistry.
[12] Bin Wu,et al. Single β-Actin mRNA Detection in Neurons Reveals a Mechanism for Regulating Its Translatability , 2014, Science.
[13] Paul A. Wiggins,et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. , 2014, ACS chemical biology.
[14] J. Hollien,et al. Fluorescent RNA labeling using self-alkylating ribozymes. , 2014, ACS chemical biology.
[15] Paul F Agris,et al. tRNA's wobble decoding of the genome: 40 years of modification. , 2007, Journal of molecular biology.
[16] Reyna K. V. Lim,et al. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. , 2011, Accounts of chemical research.
[17] T. Ha,et al. Quantitative Fluorescent Labeling of Aldehyde-Tagged Proteins for Single-Molecule Imaging , 2012, Nature Methods.
[18] A. Rentmeister,et al. A chemo-enzymatic approach for site-specific modification of the RNA cap. , 2013, Angewandte Chemie.
[19] Yang Yu,et al. Metalloprotein design using genetic code expansion. , 2014, Chemical Society reviews.
[20] Chuan He,et al. Grand challenge commentary: RNA epigenetics? , 2010, Nature chemical biology.
[21] Tsutomu Suzuki,et al. Structural basis of tRNA agmatinylation essential for AUA codon decoding , 2011, Nature Structural &Molecular Biology.
[22] O. Seitz,et al. Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. , 2011, Angewandte Chemie.
[23] Yoshio Umezawa,et al. Imaging dynamics of endogenous mitochondrial RNA in single living cells , 2007, Nature Methods.
[24] Qing Lin,et al. Design of Spiro[2.3]hex-1-ene, a Genetically Encodable Double-Strained Alkene for Superfast Photoclick Chemistry , 2014, Journal of the American Chemical Society.
[25] E. Sletten,et al. Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .
[26] A. Herrmann,et al. Fluoreszenzbildgebung der mRNA von Influenza‐H1N1 in lebenden infizierten Zellen durch FIT‐PNA mit einem einzigen Chromophor , 2011 .
[27] Raven H. Huang,et al. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. , 2014, Nature chemical biology.
[28] Scott T. Clarke,et al. Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.
[29] Tsutomu Suzuki,et al. Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS , 2011, Nature Structural &Molecular Biology.
[30] Dieter Söll,et al. Natural expansion of the genetic code. , 2007, Nature chemical biology.
[31] D. Schulz,et al. Ein chemo‐enzymatischer Ansatz zur regiospezifischen Modifizierung der RNA‐Kappe , 2013 .
[32] C. D. de Koster,et al. Selective enrichment of azide-containing peptides from complex mixtures. , 2009, Journal of proteome research.
[33] Kevin M. Dean,et al. Advances in fluorescence labeling strategies for dynamic cellular imaging. , 2014, Nature chemical biology.
[34] O. Nureki,et al. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase , 2009, Nature.
[35] Taekjip Ha,et al. Cytosolic Viral Sensor RIG-I Is a 5'-Triphosphate–Dependent Translocase on Double-Stranded RNA , 2009, Science.
[36] Taekjip Ha,et al. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. , 2013, Journal of the American Chemical Society.
[37] B. Armitage. Imaging of RNA in live cells. , 2011, Current opinion in chemical biology.
[38] U. Englisch,et al. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase. , 1997, Biochemistry.
[39] Carolyn R Bertozzi,et al. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.
[40] Peter F. Stadler,et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..
[41] Andrew S. Kohlway,et al. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea , 2009, Science.
[42] Zhike Lu,et al. m6A-dependent regulation of messenger RNA stability , 2013, Nature.
[43] X. Zhuang,et al. A single-molecule study of RNA catalysis and folding. , 2000, Science.
[44] Chaoran Jing,et al. Chemical tags for labeling proteins inside living cells. , 2011, Accounts of chemical research.
[45] Xiaowei Zhuang,et al. Single-molecule RNA folding. , 2005, Accounts of chemical research.
[46] Xiang-Dong Fu,et al. Towards a Splicing Code , 2004, Cell.
[47] K. Johnsson. Visualizing biochemical activities in living cells. , 2009, Nature chemical biology.
[48] D. Söll,et al. Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine , 2010, Proceedings of the National Academy of Sciences.
[49] Tsutomu Suzuki,et al. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. , 2010, Nature chemical biology.
[50] A. Jäschke,et al. A modified dinucleotide for site-specific RNA-labelling by transcription priming and click chemistry. , 2014, Chemical communications.
[51] C. Koehrer,et al. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. , 2008, Methods.
[52] R. Tsien,et al. Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.
[53] V. de Crécy-Lagard,et al. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. , 2012, Annual review of genetics.
[54] Peter G. Schultz,et al. Expanding the genetic code. , 2006 .
[55] Hye Yoon Park,et al. Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse , 2014, Science.
[56] S. Jaffrey,et al. RNA Mimics of Green Fluorescent Protein , 2011, Science.
[57] Hao Yan,et al. Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.
[58] J. Chin,et al. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.
[59] J. Bujnicki,et al. MODOMICS: a database of RNA modification pathways—2013 update , 2012, Nucleic Acids Res..