Highly efficient GaAs solar cells by limiting light emission angle

In a conventional flat plate solar cell under direct sunlight, light is received from the solar disk, but is re-emitted isotropically. This isotropic emission corresponds to a significant entropy increase in the solar cell, with a corresponding drop in efficiency. Here, using a detailed balance model, we show that limiting the emission angle of a high-quality GaAs solar cell is a feasible route to achieving power conversion efficiencies above 38% with a single junction. The highest efficiencies are predicted for a thin, light trapping cell with an ideal back reflector, though the scheme is robust to a non-ideal back reflector. Comparison with a conventional planar cell geometry illustrates that limiting emission angle in a light trapping geometry not only allows for much thinner cells, but also for significantly higher overall efficiencies with an excellent rear reflector. Finally, we present ray-tracing and detailed balance analysis of two angular coupler designs, show that significant efficiency improvements are possible with these couplers, and demonstrate initial fabrication of one coupler design.

[1]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[2]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[3]  D. Hall,et al.  Thermodynamic limit to light trapping in thin planar structures , 1997 .

[4]  A. Luque The confinement of light in solar cells , 1991 .

[5]  G. L. Araújo,et al.  Limiting efficiencies of GaAs solar cells , 1990 .

[6]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[7]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .

[8]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[9]  Carlos Algora,et al.  A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns , 2001 .

[10]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[11]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[12]  Y. Fink,et al.  Dielectric omnidirectional visible reflector. , 2001, Optics letters.

[13]  K. Köhler,et al.  Auger recombination in intrinsic GaAs , 1993 .

[14]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[15]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[16]  I. Luque-Heredia,et al.  A Sun Tracking Error Monitor for Photovoltaic Concentrators , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[17]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[18]  Harry A. Atwater,et al.  Microphotonic parabolic light directors fabricated by two-photon lithography , 2011 .

[19]  B. Wilson,et al.  Reflectivity of Thin Silver Films and their Use in Interferometry , 1950 .

[20]  E. Yablonovitch Statistical ray optics , 1982 .

[21]  Richard K. Ahrenkiel,et al.  Ultralong minority‐carrier lifetime epitaxial GaAs by photon recycling , 1989 .

[22]  Richard K. Ahrenkiel,et al.  Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces , 1989 .

[23]  J. Gordon,et al.  Toward ultrahigh-flux photovoltaic concentration , 2004 .

[24]  Roland Winston,et al.  High Collection Nonimaging Optics , 1989, Other Conferences.

[25]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[26]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[27]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[28]  Richard M. Swanson,et al.  The promise of concentrators , 2000 .