Radiative Transfer in Lyα Nebulae. I. Modeling a Continuous or Clumpy Spherical Halo with a Central Source

To understand the mechanism behind high-z Lyα nebulae, we simulate the scattering of Lyα in a H i halo about a central Lyα source. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total H i column densities, H i spatial concentrations, and central source galaxies (e.g., with Lyα line widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyα photons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyα nebulae (∼100 kpc) at total column densities N H I ≥ 1020 cm−2 and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyα nebula morphologies: with and without bright cores. Cores are seen when N H I is low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model, N H I dominates the trends. The radial behaviors of the Lyα surface brightness, spectral line shape, and polarization in the clumpy model with covering factor f c ≳ 5 approach those of the smooth model at the same N H I. A clumpy medium with high N H I and low f c ≲ 2 generates Lyα features via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump.

[1]  K. Seon,et al.  Lyα Radiative Transfer: A Stokes Vector Approach to Lyα Polarization , 2021, The Astrophysical Journal Supplement Series.

[2]  P. Noterdaeme,et al.  Spatially resolved Lyman-α emission around radio bright quasars , 2021, Monthly Notices of the Royal Astronomical Society.

[3]  I. Smail,et al.  ALMA Observations of Lyα Blob 1: Multiple Major Mergers and Widely Distributed Interstellar Media , 2021, The Astrophysical Journal.

[4]  J. Neill,et al.  Three Lyman-α-emitting filaments converging to a massive galaxy group at z = 2.91: discussing the case for cold gas infall , 2020, Astronomy & Astrophysics.

[5]  C. Steidel,et al.  Revisiting the gas kinematics in SSA22 Lyman-α Blob 1 with radiative transfer modelling in a multiphase, clumpy medium , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  Chang-Goo Kim,et al.  Lyα Radiative Transfer: Monte Carlo Simulation of the Wouthuysen–Field Effect , 2020, The Astrophysical Journal Supplement Series.

[7]  Paul S. Smith,et al.  What Makes Lyα Nebulae Glow? Mapping the Polarization of LABd05 , 2020, The Astrophysical Journal.

[8]  Zheng Zheng,et al.  Evidence for Infalling Gas in a Lyman-$\alpha$ Blob , 2020, 2003.06099.

[9]  V. D’Odorico,et al.  The WISSH quasars project VII. Outflows and metals in the circumgalactic medium around the hyper-luminous z~3.6 quasar J1538+08 , 2020, 2001.07218.

[10]  Elisabeta Lusso,et al.  QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  M. Dijkstra,et al.  Unlocking the Full Potential of Extragalactic Lyα through Its Polarization Properties , 2018, 1802.04280.

[12]  T. Nagao,et al.  Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.

[13]  F. Bertoldi,et al.  Discovery of a Protocluster Associated with a Lyα Blob Pair at z = 2.3 , 2017, 1708.00447.

[14]  M. Dijkstra,et al.  Resonant line transfer in a fog: Using Lyman-alpha to probe tiny structures in atomic gas , 2017, 1704.06278.

[15]  Hee-Won Lee,et al.  Polarization of Rayleigh Scattered Lyα in Active Galactic Nuclei , 2016, 1612.06994.

[16]  Paul S. Smith,et al.  MAPPING THE POLARIZATION OF THE RADIO-LOUD Lyα NEBULA B3 J2330+3927 , 2016, 1611.05506.

[17]  H. Rottgering,et al.  The CALYMHA survey : Lyα luminosity function and global escape fraction of Lyα photons at z = 2.23 , 2016, 1609.05897.

[18]  Z. Cai,et al.  Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3 , 2016, 1609.04021.

[19]  Zheng Zheng,et al.  C iv and He ii line emission of Lyman α blobs: powered by shock-heated gas , 2016, 1603.09696.

[20]  J. Prochaska,et al.  Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.

[21]  J. Blaizot,et al.  Lyman-α blobs: polarization arising from cold accretion , 2014, 1604.02066.

[22]  D. Schaerer,et al.  Lyman α line and continuum radiative transfer in a clumpy interstellar medium , 2013, 1302.7042.

[23]  R. Kramer,et al.  Line transfer through clumpy, large-scale outflows: Ly α absorption and haloes around star-forming galaxies , 2012, 1203.3803.

[24]  C. Scarlata,et al.  Central powering of the largest Lyman-α nebula is revealed by polarized radiation , 2011, Nature.

[25]  A. Loeb,et al.  The polarization of scattered Lyα radiation around high-redshift galaxies , 2007, 0711.2312.

[26]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[27]  K. Schawinski,et al.  Lyα-Emitting Galaxies at z = 3.1: L* Progenitors Experiencing Rapid Star Formation , 2007, 0710.2697.

[28]  C. Breuck,et al.  VIMOS-VLT spectroscopy of the giant Lyα nebulae associated with three z ~ 2.5 radio galaxies , 2007, 0704.1116.

[29]  A. Maselli,et al.  3D Lyalpha radiation transfer. I. Understanding Lyalpha line profile morphologies , 2006, astro-ph/0608075.

[30]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. I. Characteristics of the Emergent Spectrum , 2005, astro-ph/0510407.

[31]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. II. Observational Evidence for Gas Infall , 2005, astro-ph/0510409.

[32]  S. Oh,et al.  Lyman α radiative transfer in a multiphase medium , 2005, astro-ph/0507586.

[33]  M. Rieke,et al.  Discovery of a Large ~200 kpc Gaseous Nebula at z ≈ 2.7 with the Spitzer Space Telescope , 2005, astro-ph/0503632.

[34]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[35]  Zheng Zheng,et al.  Monte Carlo Simulation of Lyα Scattering and Application to Damped Lyα Systems , 2002, astro-ph/0203287.

[36]  Hee-Won Lee,et al.  Lyα Line Formation in Starbursting Galaxies. II. Extremely Thick, Dustless, and Static H I Media , 2001, astro-ph/0111013.

[37]  Hee-Won Lee,et al.  P-Cygni type Ly α in Starburst galaxies , 2001, astro-ph/0204004.

[38]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[39]  W. Keel,et al.  Evidence for Large-Scale Structure at z ≈ 2.4 from Lyα Imaging , 1999, astro-ph/9908183.

[40]  G. Rybicki,et al.  Polarization of the Lyα Halos around Sources before Cosmological Reionization , 1999, astro-ph/9903291.

[41]  R. Blandford,et al.  On the polarization of resonantly scattered emission lines – I. Emission and absorption coefficients in an anisotropic radiation field , 1994 .

[42]  D. Neufeld The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .

[43]  W. V. Breugel,et al.  Spatially resolved optical images of high-redshift quasi-stellar objects , 1991 .

[44]  D. Neufeld The transfer of resonance-line radiation in static astrophysical media , 1990 .