Tangent space spatial filters for interpretable and efficient Riemannian classification

OBJECTIVE Methods based on Riemannian geometry have proven themselves to be good models for decoding in brain-computer interfacing (BCI). However, these methods suffer from the curse of dimensionality and are not possible to deploy in high-density online BCI systems. In addition, the lack of interpretability of Riemannian methods leaves open the possibility that artifacts drive classification performance, which is problematic in the areas where artifactual control is crucial, e.g., neurofeedback and BCIs in patient populations. APPROACH We rigorously proved the exact equivalence between any linear function on the tangent space and corresponding derived spatial filters. Upon which, we further proposed a set of dimension reduction solutions for Riemannian methods without intensive optimization steps. The proposed pipelines are validated against classic common spatial patterns and tangent space classification using an open-access BCI analysis framework, which contains over seven datasets and 200 subjects in total. At last, the robustness of our framework is verified via visualizing the corresponding spatial patterns. MAIN RESULTS Proposed spatial filtering methods possess competitive, sometimes even slightly better, performances comparing to classic tangent space classification while reducing the time cost up to 97\% in the testing stage. Importantly, the performances of proposed spatial filtering methods converge with using only four to six filter components regardless of the number of channels which is also cross validated by the visualized spatial patterns. These results reveal the possibility of underlying neuronal sources within each recording session. SIGNIFICANCE Our work promotes the theoretical understanding about Riemannian geometry based BCI classification and allows for more efficient classification as well as the removal of artifact sources from classifiers built on Riemannian methods.

[1]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[2]  Christian Jutten,et al.  Classification of covariance matrices using a Riemannian-based kernel for BCI applications , 2013, Neurocomputing.

[3]  Stefan Haufe,et al.  SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters , 2014, NeuroImage.

[4]  Vinay Jayaram,et al.  MOABB: trustworthy algorithm benchmarking for BCIs , 2018, Journal of neural engineering.

[5]  Alexandre Barachant,et al.  Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review , 2017 .

[6]  Moritz Grosse-Wentrup,et al.  Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction , 2008, IEEE Transactions on Biomedical Engineering.

[7]  Ad Aertsen,et al.  Review of the BCI Competition IV , 2012, Front. Neurosci..

[8]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[9]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[10]  Ioannis Kompatsiaris,et al.  A Riemannian Geometry Approach to Reduced and Discriminative Covariance Estimation in Brain Computer Interfaces , 2020, IEEE Transactions on Biomedical Engineering.

[11]  Stefan Haufe,et al.  On the interpretation of weight vectors of linear models in multivariate neuroimaging , 2014, NeuroImage.

[12]  Emery N. Brown,et al.  A probabilistic framework for learning robust common spatial patterns , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  Dong Ming,et al.  Evaluation of EEG Oscillatory Patterns and Cognitive Process during Simple and Compound Limb Motor Imagery , 2014, PloS one.

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[16]  Pascal Frossard,et al.  Tangent-based manifold approximation with locally linear models , 2012, Signal Process..

[17]  Abdulhamit Subasi,et al.  EEG signal classification using PCA, ICA, LDA and support vector machines , 2010, Expert Syst. Appl..

[18]  René Vidal,et al.  Clustering and dimensionality reduction on Riemannian manifolds , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[20]  F. Yger,et al.  Riemannian Approaches in Brain-Computer Interfaces: A Review , 2017, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[21]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[22]  Christian Jutten,et al.  Riemannian Geometry Applied to BCI Classification , 2010, LVA/ICA.

[23]  P L Nunez,et al.  The Spline‐Laplacian in Clinical Neurophysiology: A Method to Improve EEG Spatial Resolution , 1991, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[24]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[25]  Jun Zhang,et al.  Bilinear Regularized Locality Preserving Learning on Riemannian Graph for Motor Imagery BCI , 2018, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[26]  Yiannis Kompatsiaris,et al.  A Collaborative Representation Approach to Detecting Error-Related Potentials in SSVEP-BCIs , 2017, ACM Multimedia.

[27]  Vinay Jayaram,et al.  Interpretable Riemannian Classification in Brain-Computer Interfacing , 2019, GBCIC.

[28]  Selina Wriessnegger,et al.  Proceedings of the 7th Graz Brain-Computer Interface Conference 2017: From Vision to Reality , 2017 .

[29]  Sergio Cruces,et al.  Information Theoretic Approaches for Motor-Imagery BCI Systems: Review and Experimental Comparison , 2018, Entropy.

[30]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[31]  Nuri Firat Ince,et al.  Extraction of spatially sparse common spatio-spectral filters with recursive weight elimination , 2013, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER).

[32]  Hui Wang,et al.  A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry , 2018, Expert Syst. Appl..

[33]  Mehrtash Harandi,et al.  Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Seungjin Choi,et al.  Bayesian Multi-task Learning for Common Spatial Patterns , 2011, 2011 International Workshop on Pattern Recognition in NeuroImaging.

[35]  Natheer Khasawneh,et al.  Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier , 2012, Comput. Methods Programs Biomed..

[36]  Ahmed H. Tewfik,et al.  Sparse common spatial patterns in brain computer interface applications , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[37]  Nicholas Ayache,et al.  Uniform Distribution, Distance and Expectation Problems for Geometric Features Processing , 1998, Journal of Mathematical Imaging and Vision.

[38]  S Makeig,et al.  Blind separation of auditory event-related brain responses into independent components. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Cuntai Guan,et al.  Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms , 2011, IEEE Transactions on Biomedical Engineering.

[40]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[41]  Fabien Lotte,et al.  A Tutorial on EEG Signal Processing Techniques for Mental State Recognition in Brain-Computer Interfaces , 2014 .

[42]  Moritz Grosse-Wentrup,et al.  Beamforming in Noninvasive Brain–Computer Interfaces , 2009, IEEE Transactions on Biomedical Engineering.

[43]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[44]  Bangyan Zhou,et al.  A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface , 2016, PloS one.

[45]  Klaus-Robert Müller,et al.  Ensembles of adaptive spatial filters increase BCI performance: an online evaluation , 2016, Journal of neural engineering.

[46]  Sung Chan Jun,et al.  EEG datasets for motor imagery brain–computer interface , 2017, GigaScience.

[47]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[48]  Christian Jutten,et al.  Common Spatial Pattern revisited by Riemannian geometry , 2010, 2010 IEEE International Workshop on Multimedia Signal Processing.

[49]  Klaus-Robert Müller,et al.  Open Access Dataset for EEG+NIRS Single-Trial Classification , 2017, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[50]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[51]  Eduardo Miranda,et al.  Guide to Brain-Computer Music Interfacing , 2014, Springer London.

[52]  G. Pfurtscheller,et al.  Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[53]  Moo K. Chung,et al.  Manifold learning on brain functional networks in aging , 2015, Medical Image Anal..

[54]  Michael S. Lazar,et al.  Spatial patterns underlying population differences in the background EEG , 2005, Brain Topography.

[55]  Christian Jutten,et al.  Dimensionality Reduction for BCI Classification using Riemannian Geometry , 2017, GBCIC.

[56]  Mehrtash Tafazzoli Harandi,et al.  From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices , 2014, ECCV.

[57]  Motoaki Kawanabe,et al.  Robust Spatial Filtering with Beta Divergence , 2013, NIPS.

[58]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.