Dictionary learning based on dip patch selection training for random noise attenuation

In recent years, sparse representation is seeing increasing application to fundamental signal and image-processing tasks. In sparse representation, a signal can be expressed as a linear combination of a dictionary (atom signals) and sparse coefficients. Dictionary learning has a critical role in obtaining a state-of-the-art sparse representation. A good dictionary should capture the representative features of the data. The whole signal can be used as training patches to learn a dictionary. However, this approach suffers from high computational costs, especially for a 3D cube. A common method is to randomly select some patches from given data as training patches to accelerate the learning process. However, the random selection method without any prior information will damage the signal if the selected patches for training are inappropriately chosen from a simple structure (e.g., training patches are chosen from a simple structure to recover the complex structure). We have developed a dip-oriented dictionary learning method, which incorporates an estimation of the dip field into the selection procedure of training patches. In the proposed approach, patches with a large dip value are selected for the training. However, it is not easy to estimate an accurate dip field from the noisy data directly. Hence, we first apply a curvelet-transform noise reduction method to remove some fine-scale components that presumably contain mostly random noise, and we then calculate a more reliable dip field from the preprocessed data to guide the patch selection. Numerical tests on synthetic shot records and field seismic image examples demonstrate that the proposed method can obtain a similar result compared with the method trained on the entire data set and obtain a better denoised result compared with the random selection method. We also compare the performance using of the proposed method and those methods based on curvelet thresholding and rank reduction on a synthetic shot record.

[1]  Yangkang Chen,et al.  Plane-wave orthogonal polynomial transform for amplitude-preserving noise attenuation , 2018, Geophysical Journal International.

[2]  Dong Zhang,et al.  Seismic noise attenuation using an online subspace tracking algorithm , 2018, Geophysical Journal International.

[3]  Yangkang Chen,et al.  Fast dictionary learning for noise attenuation of multidimensional seismic data , 2017, Geophysical Journal International.

[4]  Hui Zhou,et al.  Hybrid-Sparsity Constrained Dictionary Learning for Iterative Deblending of Extremely Noisy Simultaneous-Source Data , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Hui Song,et al.  Automatic noise attenuation based on clustering and empirical wavelet transform , 2018, Journal of Applied Geophysics.

[6]  Z. Guan,et al.  Using Fast Marching Eikonal Solver to Compute 3‐D Pds Traveltime for Deep Receiver‐Function Imaging , 2018, Journal of Geophysical Research: Solid Earth.

[7]  Min Bai,et al.  Adaptive rank-reduction method for seismic data reconstruction , 2018 .

[8]  Min Bai,et al.  Attenuating seismic noise via incoherent dictionary learning , 2018 .

[9]  Min Bai,et al.  A structural rank reduction operator for removing artifacts in least-squares reverse time migration , 2018, Comput. Geosci..

[10]  Lina Liu,et al.  Sparse graph-regularized dictionary learning for suppressing random seismic noiseGraph dictionary learning , 2018 .

[11]  Juan Wu,et al.  Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration , 2018, Comput. Geosci..

[12]  Juan Wu,et al.  Retraction notice: Fast principal component analysis for stacking seismic data , 2018 .

[13]  Min Bai,et al.  Fast principal component analysis for stacking seismic data , 2018 .

[14]  Yangkang Chen,et al.  Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning , 2017, Signal Process..

[15]  Xiao Pan,et al.  Iterative deblending of simultaneous-source data using a coherency-pass shaping operator , 2017 .

[16]  Yangkang Chen,et al.  Low-frequency noise attenuation of seismic data using mathematical morphological filtering , 2017 .

[17]  Yangkang Chen,et al.  Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D seismic data , 2017 .

[18]  Sanyi Yuan,et al.  Sparse Bayesian Learning-Based Time-Variant Deconvolution , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Z. Guan,et al.  An investigation on slowness‐weighted CCP stacking and its application to receiver function imaging , 2017 .

[20]  Yangkang Chen,et al.  Shot-domain deblending using least-squares inversion , 2017 .

[21]  S. Mostafa Mousavi,et al.  Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data , 2017 .

[22]  Yatong Zhou,et al.  Empirical Low-Rank Approximation for Seismic Noise Attenuation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Yatong Zhou A POCS method for iterative deblending constrained by a blending mask , 2017 .

[24]  Y. Chen,et al.  Preserving the discontinuities in least-squares reverse time migration of simultaneous-source data , 2017 .

[25]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[26]  S. Mostafa Mousavi,et al.  Adaptive noise estimation and suppression for improving microseismic event detection , 2016 .

[27]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[28]  Jinghuai Gao,et al.  Seismic Simultaneous Source Separation via Patchwise Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[29]  S. Mostafa Mousavi,et al.  Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform , 2016 .

[30]  Stanley Osher,et al.  Monte Carlo data-driven tight frame for seismic data recovery , 2016 .

[31]  Siyuan Cao,et al.  Application of Variational Mode Decomposition in Random Noise Attenuation and Time-frequency Analysis of Seismic Data , 2016 .

[32]  K. Xiang,et al.  Well Log Interpolation with Geological Structure Constraint for Full Waveform Inversion , 2016 .

[33]  S. Gan,et al.  Iterative Reconstruction of 3D Seismic Data via Multiple Constraints , 2016 .

[34]  Yangkang Chen,et al.  A periodically varying code for improving deblending of simultaneous sources in marine acquisition , 2016 .

[35]  Alireza Ahmadifard,et al.  Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition , 2016 .

[36]  Sergey Fomel,et al.  Data-driven time-frequency analysis of seismic data using regularized nonstationary autoregression , 2016 .

[37]  Wei Chen,et al.  Improving the S-transform for high-resolution reservoir prediction and paleochannels delineation , 2016 .

[38]  Wei Chen,et al.  Multiples attenuation using trace randomization and empirical mode decomposition , 2016 .

[39]  Wei Liu,et al.  Nonstationary signal decomposition via improved complete ensemble empirical mode decomposition and its application in ground roll noise attenuation , 2016 .

[40]  Yangkang Chen,et al.  Randomized-order multichannel singular spectrum analysis for simultaneously attenuating random and coherent noise , 2016 .

[41]  Xiaohong Chen,et al.  An Improved Weighted Projection Onto Convex Sets Method for Seismic Data Interpolation and Denoising , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[42]  Wei Liu,et al.  Seismic Time–Frequency Analysis via Empirical Wavelet Transform , 2016, IEEE Geoscience and Remote Sensing Letters.

[43]  Yangkang Chen,et al.  Seismic data reconstruction via fast projection onto convex sets in the seislet transform domain , 2015 .

[44]  Yangkang Chen,et al.  Deblending of Distance Separated Simultaneous-Source Data using Seislet Frames in the Shot Domain , 2015 .

[45]  Sergey Fomel,et al.  EMD-seislet transform , 2015 .

[46]  James H. McClellan,et al.  Seismic data denoising through multiscale and sparsity-promoting dictionary learning , 2015 .

[47]  Yangkang Chen,et al.  Deblending using a structural-oriented median filter , 2015 .

[48]  Hassan Mansour,et al.  Efficient matrix completion for seismic data reconstruction , 2015 .

[49]  G. Zhang,et al.  Seismic Data Analysis Using Synchrosqueezeing Wavelet Transform - A Case Study Applied to Boonsville Field , 2015 .

[50]  Yangkang Chen,et al.  Double Sparsity Dictionary for Seismic Noise Attenuation , 2015 .

[51]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[52]  Sanyi Yuan,et al.  Simultaneous multitrace impedance inversion with transform-domain sparsity promotionStructures — Exploring impedance inversion , 2015 .

[53]  Michael Elad,et al.  Dictionary Learning for Analysis-Synthesis Thresholding , 2014, IEEE Transactions on Signal Processing.

[54]  Wencheng Yang,et al.  Random Noise Attenuation Using a New Spectral Decomposition Method , 2014 .

[55]  Jian-Feng Cai,et al.  Data-driven tight frame construction and image denoising , 2014 .

[56]  Jianwei Ma,et al.  Simultaneous dictionary learning and denoising for seismic data , 2014 .

[57]  Jianwei Ma,et al.  Seismic data restoration via data-driven tight frame , 2014 .

[58]  Jitao Ma,et al.  High-order sparse Radon transform for AVO-preserving data reconstruction , 2014 .

[59]  Mauricio D. Sacchi,et al.  Multicomponent f-x seismic random noise attenuation via vector autoregressive operators , 2012 .

[60]  Mauricio D. Sacchi,et al.  Denoising seismic data using the nonlocal means algorithm , 2012 .

[61]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[62]  F. Herrmann,et al.  Nonequispaced curvelet transform for seismic data reconstruction: A sparsity-promoting approach , 2010 .

[63]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[64]  Guochang Liu,et al.  Nonlinear structure‐enhancing filtering using plane‐wave prediction * , 2010 .

[65]  Michael Elad,et al.  Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation , 2010, IEEE Transactions on Signal Processing.

[66]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[67]  Stewart Trickett,et al.  F-xy Cadzow Noise Suppression , 2008 .

[68]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[69]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[70]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[71]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[72]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[73]  Onur G. Guleryuz,et al.  Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory , 2006, IEEE Transactions on Image Processing.

[74]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[75]  Michael Elad,et al.  K-SVD and its non-negative variant for dictionary design , 2005, SPIE Optics + Photonics.

[76]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[78]  Necati Gulunay,et al.  Noncausal spatial prediction filtering for random noise reduction on 3-D poststack data , 2000 .

[79]  Gary F. Margrave,et al.  Median filtering in Kirchhoff migration for noisy data , 2000 .

[80]  Yanghua Wang,et al.  Random noise attenuation using forward-backward linear prediction , 1999 .

[81]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[82]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[83]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .

[84]  Jing M. Chen,et al.  Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods , 1995, IEEE Trans. Geosci. Remote. Sens..

[85]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[86]  Yingbo Hua,et al.  Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[87]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..