AbstractThe dimension of a graphG=(V, E) is the minimum numberd such that there exists a representation
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpepeea0de9arVe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-dir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaey% OKH4QabmiEayaaraGaeyicI4SaamOuamaaCaaaleqabaGaamizaaaa% kiaacIcacaWG4bGaeyicI4SaamOvaiaacMcaaaa!4615!
$$x \to \bar x \in R^d (x \in V)$$
and a thresholdt such thatxy εE iff
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpepeea0de9arVe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-dir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfGaqaai% aadIhaaSqabeaacWaGaYaaOcGHsislaaGcdaWfGaqaaiaadMhaaSqa% beaacWaGascaOcGHsislaaGccqGHLjYScaWG0baaaa!44B0!
$$\mathop x\limits^ - \mathop y\limits^ - \geqslant t$$
. We prove that d(G)≤n−x(G) and
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpepeea0de9arVe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-dir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWFKb% Gaa8hkaGqaciaa+DeacaWFPaGaeyizImQaa4NBaGGaciab9jHiTmaa% kaaabaGaa4NBaaWcbeaaaaa!4195!
$$d(G) \leqslant n - \sqrt n $$
wheren=|V| andx(G) is the chromatic number ofG; we present upper bounds for the dimension of graphs with a large girth and we show that the complement of a forest can be represented by unit vectors inR6. We prove that d(G)≥1/15n for most graphs and that there are 3-regular graphs with d(G)≥c logn/log logn.
[1]
P. Hammer,et al.
Aggregation of inequalities in integer programming.
,
1975
.
[2]
D. Falikman.
Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix
,
1981
.
[3]
Vojtech Rödl,et al.
Geometrical embeddings of graphs
,
1989,
Discret. Math..
[4]
J. A. Bondy,et al.
Graph Theory with Applications
,
1978
.
[5]
J. A. Bondy,et al.
Graph Theory with Applications
,
1978
.
[6]
Hiroshi Maehara.
On the sphericity for the join of many graphs
,
1984,
Discret. Math..
[7]
H. Wilf.
On the Permanent of a Doubly Stochastic Matrix
,
1966,
Canadian Journal of Mathematics.
[8]
Hiroshi Maehara,et al.
Space graphs and sphericity
,
1984,
Discret. Appl. Math..
[9]
Peter Frankl,et al.
The Johnson-Lindenstrauss lemma and the sphericity of some graphs
,
1987,
J. Comb. Theory B.