A solution method for combined semi-infinite and semi-definite programming

Abstract In this paper, we develop a discretisation algorithm with an adaptive scheme for solving a class of combined semi-infinite and semi-definite programming problems. We show that any sequence of points generated by the algorithm contains a convergent subsequence; and furthermore, each accumulation point is a local optimal solution of the combined semi-infinite and semi-definite programming problem. To illustrate the effectiveness of the algorithm, two specific classes of problems are solved. They are relaxations of quadratically constrained semi-infinite quadratic programming problems and semi-infinite eigenvalue problems.

[1]  Chih-Jen Lin,et al.  Relaxed Cutting Plane Method for Solving Linear Semi-Infinite Programming Problems , 1998 .

[2]  Vaithilingam Jeyakumar,et al.  Inequality systems and optimization , 1991 .

[3]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[4]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[5]  Henry Wolkowicz,et al.  Zero duality gaps in infinite-dimensional programming , 1990 .

[6]  Gautam Appa,et al.  Linear Programming in Infinite-Dimensional Spaces , 1989 .

[7]  A. Kaplan,et al.  Proximal interior point method for convex semi-infinite programming , 2001 .

[8]  E. Anderson Linear Programming In Infinite Dimensional Spaces , 1970 .

[9]  G. Pataki Cone-LP ' s and Semidefinite Programs : Geometry and a Simplex-Type Method , 2022 .

[10]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[11]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[12]  R. Reemtsen,et al.  Semi‐Infinite Programming , 1998 .

[13]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[14]  Kennan T. Smith,et al.  Linear Topological Spaces , 1966 .

[15]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..

[16]  F. Jarre An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices , 1993 .

[17]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming and Applications , 1983, ISMP.

[18]  Kok Lay Teo,et al.  Nonlinear Lagrangian Functions and Applications to Semi-Infinite Programs , 2001, Ann. Oper. Res..

[19]  Adrian S. Lewis,et al.  An extension of the simplex algorithm for semi-infinite linear programming , 1989, Math. Program..

[20]  Chih-Jen Lin,et al.  Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme , 2001 .

[21]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[22]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[23]  Kok Lay Teo,et al.  Computational Discretization Algorithms for Functional Inequality Constrained Optimization , 2000, Ann. Oper. Res..

[24]  Robert G. Jeroslow,et al.  Duality in Semi-Infinite Linear Programming , 1983 .

[25]  R. Reemtsen Some outer approximation methods for semi-infinite optimization problems , 1994 .

[26]  Kenneth O. Kortanek,et al.  Perfect duality in semi–infinite and semidefinite programming , 2001, Math. Program..

[27]  Stephen A. Vavasis Nonlinear optimization , 1991 .

[28]  Michael L. Overton,et al.  Conditioning of semidefinite programs , 1999, Math. Program..

[29]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[30]  R. Vanderbei,et al.  Max-min eigenvalue problems, primal-dual Interior point algorithms, and Trust region subproblemst , 1995 .

[31]  Florian A. Potra,et al.  A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..