Thermal Stability of TaSi x N y Films Deposited by Reactive Sputtering on SiO2

The thermal stability of TaSi x N y /SiO 2 /p-type Si metal-insulator-semiconductor structure has been evaluated by measuring equivalent oxide thickness (EOT) from capacitance-voltage curves and gate leakage current as a function of annealing temperatures. TaSi x N y films were deposited using reactive sputtering from a TaSi 2 target, varying the nitrogen/argon flow ratio. A reaction between Ta 53 Si 47 and SiO 2 was observed after a 1000°C anneal, resulting in the increase of interfacial roughness and oxide thickness in the TaSi x N y /SiO 2 /p-Si structures. Cross-sectional transmission electron microscopy shows no indication of an interfacial reaction or crystallization in Ta 22 Si 29 N 49 on SiO 2 up to 1000°C as manifested by the negligible change in EOT and the stable leakage currents density (2.0 x 10 -6 A/cm 2 at V g = -1 V). The presence of Si-N bonds is attributed to cause the amorphous nature of the high N-containing TaSi x N y films. This may retard the formation of an interface layer and improve the chemical-thermal stability of the gate electrode/dielectric interface and oxygen diffusion barrier properties under high-temperature annealing.

[1]  F. Huang,et al.  Diffusion Barriers with Sputtered TaN, Ta-Si-N, and TaSi x for Thermal Stable Contact , 1991 .

[2]  Veena Misra,et al.  Use of metal–oxide–semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2 , 2001 .

[3]  A. Grill,et al.  Layered TaSiN as an oxidation resistant electrically conductive barrier , 1999 .

[4]  J. H. Thomas,et al.  A Photoelectron Spectroscopy Study of CF 4 / H 2 Reactive Ion Etching Residue on Tantalum Disilicide , 1989 .

[5]  Tzong-Sheng Chang,et al.  Study of tantalum-based diffusion barriers between Al and Si , 1994 .

[6]  C. Park,et al.  Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection , 1999 .

[7]  Carlton M. Osburn,et al.  Impact of gate workfunction on device performance at the 50 nm technology node , 2000 .

[8]  T. Hara,et al.  Barrier Properties for Oxygen Diffusion in a TaSiN Layer , 1997 .

[9]  T. Hara,et al.  Barrier effect of TaSiN layer for oxygen diffusion , 1996 .

[10]  M. Nicolet Ternary amorphous metallic thin films as diffusion barriers for Cu metallization , 1995 .

[11]  K. Ahmed,et al.  Characterization of ultra-thin oxides using electrical C-V and I-V measurements , 1998 .

[12]  Jong-Wan Park,et al.  Nanostructured Ta-Si-N diffusion barriers for Cu metallization , 1997 .

[13]  Robert Beyers,et al.  Thermodynamic considerations in refractory metal-silicon-oxygen systems , 1984 .

[14]  K. Sasaki,et al.  Stoichiometry of Ta–N Film and Its Application for Diffusion Barrier in the Al3Ta/Ta–N/Si Contact System , 1990 .

[15]  G. Ingo,et al.  X‐ray photoelectron spectroscopy investigation on the chemical structure of amorphous silicon nitride (a‐SiNx) , 1989 .

[16]  J.R. Hauser,et al.  Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors , 1999, IEEE Electron Device Letters.

[17]  M. E. Day,et al.  Electron Cyclotron Resonance Plasma Etching of Native TiO2 on TiN , 1996 .