Call to order: a hierarchical browsing approach to eliciting users' preference

Computing preference queries has received a lot of attention in the database community. It is common that the user is unsure of his/her preference, so care must be taken to elicit the preference of the user correctly. In this paper, we propose to elicit the preferred ordering of a user by utilizing skyline objects as the representatives of the possible ordering. We introduce the notion of order-based representative skylines which selects representatives based on the orderings that they represent. To further facilitate preference exploration, a hierarchical clustering algorithm is applied to compute a denogram on the skyline objects. By coupling the hierarchical clustering with visualization techniques, we allow users to refine their preference weight settings by browsing the hierarchy. Extensive experiments were conducted and the results validate the feasibility and the efficiency of our approach.

[1]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[2]  Anthony K. H. Tung,et al.  Skyframe: a framework for skyline query processing in peer-to-peer systems , 2008, The VLDB Journal.

[3]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS.

[4]  Anthony K. H. Tung,et al.  Understanding the meaning of a shifted sky: a general framework on extending skyline query , 2010, The VLDB Journal.

[5]  Jan Chomicki,et al.  Skyline with presorting , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[6]  Anthony K. H. Tung,et al.  On domination game analysis for microeconomic data mining , 2009, TKDD.

[7]  Ben Y. Zhao,et al.  Parallelizing Skyline Queries for Scalable Distribution , 2006, EDBT.

[8]  Anthony K. H. Tung,et al.  Efficient Skyline Query Processing on Peer-to-Peer Networks , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[9]  Torben Hagerup,et al.  A Guided Tour of Chernoff Bounds , 1990, Inf. Process. Lett..

[10]  Xuemin Lin,et al.  Selecting Stars: The k Most Representative Skyline Operator , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[11]  Wolf-Tilo Balke,et al.  Efficient Distributed Skylining for Web Information Systems , 2004, EDBT.

[12]  Anthony K. H. Tung,et al.  On High Dimensional Skylines , 2006, EDBT.

[13]  Jan Chomicki,et al.  Discovering Relative Importance of Skyline Attributes , 2009, Proc. VLDB Endow..

[14]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[15]  Anthony K. H. Tung,et al.  DADA: a data cube for dominant relationship analysis , 2006, SIGMOD Conference.

[16]  Philip S. Yu,et al.  Redefining Clustering for High-Dimensional Applications , 2002, IEEE Trans. Knowl. Data Eng..

[17]  Adriane Chapman,et al.  Making database systems usable , 2007, SIGMOD '07.

[18]  R. Saigal Linear Programming: A Modern Integrated Analysis , 1995 .

[19]  Jian Pei,et al.  Distance-Based Representative Skyline , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[20]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[21]  Bin Jiang,et al.  Mining preferences from superior and inferior examples , 2008, KDD.

[22]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[23]  Anthony K. H. Tung,et al.  Minimizing the communication cost for continuous skyline maintenance , 2009, SIGMOD Conference.

[24]  Anthony K. H. Tung,et al.  On Dominating Your Neighborhood Profitably , 2007, VLDB.

[25]  Jarek Gryz,et al.  Maximal Vector Computation in Large Data Sets , 2005, VLDB.

[26]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[27]  Bernhard Seeger,et al.  An optimal and progressive algorithm for skyline queries , 2003, SIGMOD '03.

[28]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[29]  Donald Kossmann,et al.  Shooting Stars in the Sky: An Online Algorithm for Skyline Queries , 2002, VLDB.

[30]  Anthony K. H. Tung,et al.  Categorical skylines for streaming data , 2008, SIGMOD Conference.

[31]  Anthony K. H. Tung,et al.  Discovering strong skyline points in high dimensional spaces , 2005, CIKM '05.

[32]  Anthony K. H. Tung,et al.  Finding k-dominant skylines in high dimensional space , 2006, SIGMOD Conference.

[33]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[34]  Ken C. K. Lee,et al.  Approaching the Skyline in Z Order , 2007, VLDB.