From hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin - An overview.

[1]  A. Papayannis,et al.  CCN Activity, Variability and Influence on Droplet Formation during the HygrA-Cd Campaign in Athens , 2017 .

[2]  V. Freudenthaler,et al.  Saharan dust contribution to the Caribbean summertime boundary layer –a lidar study during SALTRACE , 2016 .

[3]  Volker Freudenthaler,et al.  About the effects of polarising optics on lidar signals and the Δ90 calibration , 2016 .

[4]  Francesc Rocadenbosch,et al.  Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign , 2016 .

[5]  C. Bretherton,et al.  Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system , 2016, Proceedings of the National Academy of Sciences.

[6]  A. Nenes,et al.  Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol , 2016, Scientific Reports.

[7]  G. Biskos,et al.  Particulate pollution transport episodes from Eurasia to a remote region of northeast Mediterranean , 2016 .

[8]  M. Komppula,et al.  Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements , 2015 .

[9]  V. Freudenthaler,et al.  Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET , 2015 .

[10]  R. Draxler,et al.  NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System , 2015 .

[11]  Josef Gasteiger,et al.  Correction of water vapor absorption for aerosol remote sensing with ceilometers , 2015 .

[12]  M. Lawrence,et al.  In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity , 2015 .

[13]  A. Ansmann,et al.  Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies , 2015 .

[14]  Chengquan Huang,et al.  Detection of burned areas from mega-fires using daily and historical MODIS surface reflectance , 2015 .

[15]  A Novel Lidar Ceilometer , 2015 .

[16]  E. Gerasopoulos,et al.  Long-term characterization of organic and elemental carbon in the PM 2.5 fraction: the case of Athens, Greece , 2014 .

[17]  D. Nicolae,et al.  Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. , 2014, The Science of the total environment.

[18]  J. Pelon,et al.  Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign , 2014 .

[19]  A. Kasper-Giebl,et al.  Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010 , 2014 .

[20]  P. Kassomenos,et al.  Mass closure and source apportionment of PM2.5 by Positive Matrix Factorization analysis in urban Mediterranean environment , 2014 .

[21]  Mar Viana,et al.  ECOC comparison exercise with identical thermal protocols after temperature offset correction – instrument diagnostics by in-depth evaluation of operational parameters , 2014 .

[22]  W. Thomas,et al.  What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET , 2014 .

[23]  J. Baltrusaitis,et al.  Water adsorption constrained Frenkel–Halsey–Hill adsorption activation theory: Montmorillonite and illite , 2013 .

[24]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[25]  Gerhard Wotawa,et al.  The Lagrangian particle dispersion model FLEXPART-WRF version 3.1 , 2013 .

[26]  J. Lelieveld,et al.  Climatology and Dynamics of the Summer Etesian Winds over the Eastern Mediterranean , 2013 .

[27]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[28]  Frank S. Marzano,et al.  Optimum Estimation of Rain Microphysical Parameters From X-Band Dual-Polarization Radar Observables , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Pao K Wang,et al.  Physics and Dynamics of Clouds and Precipitation , 2013 .

[30]  P. Kassomenos,et al.  Composition and Mass Closure of PM2.5 in Urban Environment (Athens, Greece) , 2013 .

[31]  B. Weinzierl,et al.  Aerosol classification by airborne high spectral resolution lidar observations , 2012 .

[32]  J. Smith,et al.  Printer-friendly Version Interactive Discussion Atmospheric Chemistry and Physics Discussions Aerosol Mixing-state, Hygroscopic Growth and Cloud Activation Efficiency during Mirage 2006 Acpd Printer-friendly Version Interactive Discussion Acpd Printer-friendly Version Interactive Discussion Acpd Pri , 2022 .

[33]  P. Monks,et al.  Review : Untangling the influence of air-mass history in interpreting observed atmospheric composition , 2012 .

[34]  A. Papayannis,et al.  Influence of Saharan Dust Transport Events on PM2.5 Concentrations and Composition over Athens , 2012, Water, Air, & Soil Pollution.

[35]  J. Burrows,et al.  Impact of the 2009 Attica wild fires on the air quality in urban Athens , 2012 .

[36]  R. Miller,et al.  Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 1: Model description, annual simulations and evaluation , 2011 .

[37]  V. Freudenthaler,et al.  The May/June 2008 Saharan dust event over Munich: Intensive aerosol parameters from lidar measurements , 2011 .

[38]  Prashant Kumar,et al.  On the effect of dust particles on global cloud condensation nuclei and cloud droplet number , 2011 .

[39]  Orhan Yenigün,et al.  Particulate matter (PM10) in Istanbul: Origin, source areas and potential impact on surrounding regions , 2011 .

[40]  U. Blahak,et al.  Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe , 2011 .

[41]  N. Mihalopoulos,et al.  Mass and chemical composition of size-segregated aerosols (PM 1 , PM 2.5 , PM 10 ) over Athens, Greece: local versus regional sources , 2011 .

[42]  C. Samara,et al.  PM10 composition during an intense Saharan dust transport event over Athens (Greece). , 2011, The Science of the total environment.

[43]  Prashant Kumar,et al.  Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals , 2011 .

[44]  I. Sokolik,et al.  Hygroscopic properties of volcanic ash , 2011 .

[45]  C. Zerefos,et al.  Present climate trend analysis of the Etesian winds in the Aegean Sea , 2011 .

[46]  Prashant Kumar,et al.  Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals , 2011 .

[47]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .

[48]  Chunsheng Zhao,et al.  Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions , 2010 .

[49]  On the effect of insoluble dust particles on global CCN and droplet number , 2010 .

[50]  Christos Zerefos,et al.  Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: the urban environment of Athens , 2010 .

[51]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[52]  E. O'connor,et al.  A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements , 2010 .

[53]  R. Engelmann,et al.  Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer , 2010 .

[54]  Prashant Kumar,et al.  Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol , 2009 .

[55]  J. Randerson,et al.  Assessing variability and long-term trends in burned area by merging multiple satellite fire products , 2009 .

[56]  Alexandros Papayannis,et al.  Systematic lidar observations of Saharan dust layers over Athens, Greece in the frame of EARLINET project (2004–2006) , 2009 .

[57]  A. Nenes,et al.  Atmospheric Chemistry and Physics Cloud Condensation Nuclei Measurements in the Marine Boundary Layer of the Eastern Mediterranean: Ccn Closure and Droplet Growth Kinetics , 2022 .

[58]  Guy N. Pearson,et al.  An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer , 2009 .

[59]  K. Eleftheriadis,et al.  Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny‐Ålesund, Svalbard from 1998–2007 , 2009 .

[60]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[61]  U. Pöschl,et al.  Climatologies of Cloud-related Aerosols. Part 2: Particle Hygroscopicity and Cloud Condensation Nucleus Activity , 2009 .

[62]  Benjamin J. Mullins,et al.  Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method , 2008 .

[63]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[64]  Albert Ansmann,et al.  Lidar Observations of the Vertical Aerosol Flux in the Planetary Boundary Layer , 2008 .

[65]  Timo Mäkelä,et al.  Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean , 2008 .

[66]  Spyros N. Pandis,et al.  CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol , 2008 .

[67]  Meinrat O. Andreae,et al.  Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols , 2008 .

[68]  A. Nenes,et al.  Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol , 2008 .

[69]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[70]  A. Nenes,et al.  Atmospheric Chemistry and Physics Discussions Interactive comment on “ Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol ” , 2007 .

[71]  Six-month ground-based water vapour raman lidar measurements over Athens, greece and system validation , 2007 .

[72]  T. Petäjä,et al.  Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation , 2006 .

[73]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[74]  G. Feingold,et al.  Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects , 2006 .

[75]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[76]  Shepard A. Clough,et al.  The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[77]  A. Nenes,et al.  A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements , 2005 .

[78]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[79]  Susanne Crewell,et al.  Accuracy of cloud liquid water path from ground‐based microwave radiometry 1. Dependency on cloud model statistics , 2003 .

[80]  A. Ansmann,et al.  Experimental determination of the lidar overlap profile with Raman lidar. , 2002, Applied optics.

[81]  D. Althausen,et al.  Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study. , 2001, Applied optics.

[82]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .

[83]  Kostas Lagouvardos,et al.  The effect of the island of Crete on the Etesian winds over the Aegean Sea , 2001 .

[84]  Clemens Simmer,et al.  Microwave Radiometer for Cloud Carthography: A 22-channel ground-based microwave radiometer for atmospheric research , 2001 .

[85]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[86]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[87]  Flow dynamics in Athens area under moderate large-scale winds , 1998 .

[88]  I. Ziomas The mediterranean campaign of photochemical tracers—transport and chemical evolution (MEDCAPHOT-TRACE): an outline , 1998 .

[89]  Erik N. Rasmussen,et al.  Design and Deployment of a Portable, Pencil-Beam, Pulsed, 3-cm Doppler Radar , 1997 .

[90]  Christos Zerefos,et al.  Boundary layer dynamics in an urban coastal environment under sea breeze conditions , 1995 .

[91]  C. Fairall,et al.  Measurement of Stratus Cloud and Drizzle Parameters in ASTEX with a K , 1995 .

[92]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[93]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[94]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[95]  H. Köhler The nucleus in and the growth of hygroscopic droplets , 1936 .