Multiobjective Constriction Particle Swarm Optimization and Its Performance Evaluation

A novel multiobjective constriction particle swarm optimization (MOCPSO) is presented. MOCPSO not only uses mutation operator to avoid earlier convergence and uses adaptive weight to raise the search capacity, but also uses a new crowding operator to improve the distribution of nondominated solutions along the Pareto front, and uses the uniform design to obtain the optimal parameter combination. The sound evaluation criteria for multiobjective optimization algorithm are given, and some typical test functions are introduced. Experimental results show that MOCPSO has faster convergent speed and better search capacity than other multiobjective particle swarm optimization algorithms, especially when there are more than two objectives.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[3]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems , 2006, Int. J. Intell. Syst..

[4]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[5]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[6]  Yuping Wang,et al.  Multiobjective programming using uniform design and genetic algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[7]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[8]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[9]  Ponnuthurai Nagaratnam Suganthan,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems: Research Articles , 2006 .

[10]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[11]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[12]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[15]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[16]  Rui Mendes,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2006 .

[17]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[18]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[19]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[20]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .