Finite element contact analysis of fractal surfaces

The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic–plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass–Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic–plastic contact of fractal surfaces.

[1]  B. Persson Elastoplastic contact between randomly rough surfaces. , 2001, Physical review letters.

[2]  Denis Blackmore,et al.  Fractal Analysis of Height Distributions of Anisotropic Rough Surfaces , 1998 .

[3]  A. Majumdar,et al.  Fractal characterization and simulation of rough surfaces , 1990 .

[4]  Alex Hansen,et al.  Elastic response of rough surfaces in partial contact , 2000 .

[5]  P. Sahoo Adhesive friction for elastic–plastic contacting rough surfaces considering asperity interaction , 2006 .

[6]  I. Green,et al.  A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat , 2005 .

[7]  T. Baumberger,et al.  Shear stiffness of a solid–solid multicontact interface , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  F. F. Ling Fractals, engineering surfaces and tribology , 1990 .

[9]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Mark O. Robbins,et al.  Finite element modeling of elasto-plastic contact between rough surfaces , 2005 .

[11]  K. Komvopoulos,et al.  Elastic-plastic finite element analysis for the head-disk interface with fractal topography description , 2002 .

[12]  Towards a statistical theory of solid dry friction , 1996, cond-mat/9612206.

[13]  J. Dieterich,et al.  IMAGING SURFACE CONTACTS : POWER LAW CONTACT DISTRIBUTIONS AND CONTACT STRESSES IN QUARTZ, CALCITE, GLASS AND ACRYLIC PLASTIC , 1996 .

[14]  D. Bogy,et al.  An Elastic-Plastic Model for the Contact of Rough Surfaces , 1987 .

[15]  Q. Jane Wang,et al.  Elasto-Plastic Contact of Rough Surfaces , 2001 .

[16]  J. Greenwood,et al.  Surface Roughness and Contact: An Apology , 2001 .

[17]  Yong Hoon Jang,et al.  Linear elastic contact of the Weierstrass profile† , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  L. Kogut,et al.  Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat , 2002 .

[19]  J. Kaczmarek,et al.  Finite-elements model for the contact of rough surfaces , 1994 .

[20]  Liming Chang,et al.  A model of asperity interactions in elastic-plastic contact of rough surfaces , 2001 .

[21]  Kyriakos Komvopoulos,et al.  Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies , 2001 .

[22]  Yongwu Zhao,et al.  An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow , 2000 .

[23]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[24]  P. Sahoo,et al.  Asperity interaction in adhesive contact of metallic rough surfaces , 2005 .

[25]  Wen-Ruey Chang,et al.  An elastic-plastic contact model for a rough surface with an ion-plated soft metallic coating , 1997 .

[26]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[27]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  J. Greenwood A unified theory of surface roughness , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  B. Bhushan,et al.  Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces , 1990 .

[30]  R. D. Gibson,et al.  The elastic contact of a rough surface , 1975 .

[31]  K. Komvopoulos,et al.  Contact analysis of elastic-plastic fractal surfaces , 1998 .

[32]  J. Molinari,et al.  Finite-element analysis of contact between elastic self-affine surfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  R. D. Arnell,et al.  The development of a finite element model to simulate the sliding interaction between two, three-dimensional, elastoplastic, hemispherical asperities , 2000 .

[34]  R. Buzio,et al.  Contact mechanics and friction of fractal surfaces probed by atomic force microscopy , 2003 .

[35]  M. Ausloos,et al.  A multivariate Weierstrass–Mandelbrot function , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  P. Sahoo,et al.  Asperity interaction in elastic–plastic contact of rough surfaces in presence of adhesion , 2005 .