Analysis of prior models for a blocky inversion of seismic AVA data
暂无分享,去创建一个
[1] Michael S. Zhdanov,et al. Focusing geophysical inversion images , 1999 .
[2] Donald Geman,et al. Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..
[3] M. B. Widess. HOW THIN IS A THIN BED , 1973 .
[4] D. Jackson. The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .
[5] D. Oldenburg,et al. Recovery of the acoustic impedance from reflection seismograms , 1983 .
[6] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[7] Timothy A. Davis,et al. Row Modifications of a Sparse Cholesky Factorization , 2005, SIAM J. Matrix Anal. Appl..
[8] K. Aki,et al. Quantitative Seismology, 2nd Ed. , 2002 .
[9] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[10] S. Treitel,et al. Fast l p solution of large, sparse, linear systems: application to seismic travel time tomography , 1988 .
[11] Lasse Amundsen,et al. Comparison of the least-squares criterion and the Cauchy criterion in frequency-wavenumber inversion , 1991 .
[12] Michel Barlaud,et al. Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..
[13] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[14] Mauricio D. Sacchi,et al. High‐resolution velocity gathers and offset space reconstruction , 1995 .
[15] Mauricio D. Sacchi,et al. Global optimization with model-space preconditioning: Application to AVO inversion , 2008 .
[16] A. Buland,et al. Bayesian linearized AVO inversion , 2003 .
[17] D. Oldenburg,et al. NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .
[18] K. Bube,et al. Hybrid l 1 /l 2 minimization with applications to tomography , 1997 .