Correlation Filter Learning Toward Peak Strength for Visual Tracking

This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

[1]  Xin Yu,et al.  Self-expressive tracking , 2015, Pattern Recognit..

[2]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Huchuan Lu,et al.  Superpixel tracking , 2011, 2011 International Conference on Computer Vision.

[4]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Li Zhang,et al.  Discriminative Low-Rank Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Xiaoqin Zhang,et al.  Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking , 2011, International Journal of Computer Vision.

[15]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[16]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[18]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[19]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Guanghui Wang,et al.  Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning , 2016, ECCV.

[21]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[22]  Huchuan Lu,et al.  Object Tracking via 2DPCA and $\ell_{1}$-Regularization , 2012, IEEE Signal Processing Letters.

[23]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Guanghui Wang,et al.  Tracking Completion , 2016, ECCV.

[25]  Ying Wu,et al.  Scribble Tracker: A Matting-Based Approach for Robust Tracking , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[27]  Tianzhu Zhang,et al.  In Defense of Sparse Tracking: Circulant Sparse Tracker , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[29]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[30]  Hanzi Wang,et al.  Incremental Learning of 3D-DCT Compact Representations for Robust Visual Tracking , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[32]  Xin Yu,et al.  Object Tracking With Multi-View Support Vector Machines , 2015, IEEE Transactions on Multimedia.

[33]  Xiaoqin Zhang,et al.  Single and Multiple Object Tracking Using Log-Euclidean Riemannian Subspace and Block-Division Appearance Model , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[36]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Lei Zhang,et al.  Real-Time Object Tracking Via Online Discriminative Feature Selection , 2013, IEEE Transactions on Image Processing.

[38]  Xiaoqin Zhang,et al.  Robust Visual Tracking Based on Incremental Tensor Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[39]  Shunli Zhang,et al.  Single Object Tracking With Fuzzy Least Squares Support Vector Machine , 2015, IEEE Transactions on Image Processing.

[40]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[41]  Xin Yu,et al.  Hybrid support vector machines for robust object tracking , 2015, Pattern Recognit..

[42]  Josef Kittler,et al.  A dictionary learning approach to tracking , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[43]  Li Zhang,et al.  Visual Tracking via Locally Structured Gaussian Process Regression , 2015, IEEE Signal Processing Letters.

[44]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Qingshan Liu,et al.  Robust Visual Tracking via Convolutional Networks Without Training , 2015, IEEE Transactions on Image Processing.

[46]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[47]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[51]  Huchuan Lu,et al.  Discriminative Hash Tracking With Group Sparsity , 2016, IEEE Transactions on Cybernetics.

[52]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[53]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[55]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Shunli Zhang,et al.  Robust Visual Tracking via Sparsity-Induced Subspace Learning , 2015, IEEE Transactions on Image Processing.

[57]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[58]  Changsheng Xu,et al.  Structural Correlation Filter for Robust Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[61]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[63]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Li Zhang,et al.  Robust Tracking via Locally Structured Representation , 2016, International Journal of Computer Vision.

[65]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[66]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[67]  Huchuan Lu,et al.  Visual Tracking via Random Walks on Graph Model , 2016, IEEE Transactions on Cybernetics.

[68]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[69]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[70]  Junzhou Huang,et al.  Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Xiaogang Wang,et al.  STCT: Sequentially Training Convolutional Networks for Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  Xin Yu,et al.  Multi-local-task learning with global regularization for object tracking , 2015, Pattern Recognit..