The pallet loading problem: a review of solution methods and computational experiments

The manufacturer's pallet loading problem (MPLP) has been widely studied during the past 50 years. It consists of placing a maximum number of identical rectangular boxes onto a single rectangular pallet. In this paper, we have reviewed the methods that have been proposed for the solution of this problem. Furthermore, the various problem instances and data sets are analyzed that have been used in computational experiments for the evaluation of these methods. The most challenging and yet unsolved methods are identified. By doing so, areas of future research concerning the MPLP can be highlighted.

[1]  K. Dowsland Some experiments with simulated annealing techniques for packing problems , 1993 .

[2]  Jing Zhou,et al.  The pinwheel pattern and its application to the manufacturer's pallet-loading problem , 2009, Int. Trans. Oper. Res..

[3]  J. C. Herz,et al.  Recursive computational procedure for two-dimensional stock cutting , 1972 .

[4]  John A. George,et al.  A Correction of the Improved Bounds for the Non-Guillotine Constrained Cutting-Stock Problem , 1992 .

[5]  Glaydston Mattos Ribeiro,et al.  Optimizing the woodpulp stowage using Lagrangean relaxation with clusters , 2008, J. Oper. Res. Soc..

[6]  K.C. Wu,et al.  A Two-phase algorithm for the manufacturer’s pallet loading problem , 2007, 2007 IEEE International Conference on Industrial Engineering and Engineering Management.

[7]  Heinz Isermann,et al.  Ein Planungssystem zur Optimierung der Palettenbeladung mit kongruenten rechteckigen Versandgebinden , 1987 .

[8]  Reinaldo Morabito,et al.  A Tight Lagrangean Relaxation Bound for the Manufacturer's Pallet Loading Problem , 2002, Stud. Inform. Univ..

[9]  Maing-Kyu Kang,et al.  A fast algorithm for two-dimensional pallet loading problems of large size , 2001, Eur. J. Oper. Res..

[10]  E. E. Bischoff,et al.  Loading Multiple Pallets , 1995 .

[11]  Kathryn A. Dowsland Determining an upper bound for a class of rectangular packing problems , 1985, Comput. Oper. Res..

[12]  Subir Bhattacharya,et al.  An exact depth-first algorithm for the pallet loading problem , 1998, Eur. J. Oper. Res..

[13]  E. Bischoff,et al.  An Application of the Micro to Product Design and Distribution , 1982 .

[14]  Reinaldo Morabito,et al.  An AND/OR-graph Approach to the Container Loading Problem , 1994 .

[15]  Adrian Smith,et al.  An Algorithm to Optimize the Layout of Boxes in Pallets , 1980 .

[16]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[17]  Parviz Ghandforoush,et al.  An Improved Algorithm for the Non-Guillotine-Constrained Cutting-Stock Problem , 1990 .

[18]  Reinaldo Morabito,et al.  Loading optimization of palletized products on trucks , 2000 .

[19]  Thom J. Hodgson,et al.  A Combined Approach to the Pallet Loading Problem , 1982 .

[20]  Mike Wright,et al.  Experiments with a strategic oscillation algorithm for the pallet loading problem , 2001 .

[21]  Ramón Alvarez-Valdés,et al.  A branch-and-cut algorithm for the pallet loading problem , 2005, Comput. Oper. Res..

[22]  J. Nelissen New approaches to the pallet loading problem , 1993 .

[23]  Harold J. Steudel Generating pallet loading patterns with considerations of item stacking on end and side surfaces , 1984 .

[24]  Reinaldo Morabito,et al.  A simple and effective recursive procedure for the manufacturer's pallet loading problem , 1998, J. Oper. Res. Soc..

[25]  Robert F. Dell,et al.  Solving the pallet loading problem , 2008, Eur. J. Oper. Res..

[26]  Reinaldo Morabito,et al.  Some experiments with a simple tabu search algorithm for the manufacturer's pallet loading problem , 2006, Comput. Oper. Res..

[27]  Kathryn A. Dowsland A Combined Data-Base and Algorithmic Approach to the Pallet-Loading Problem , 1987 .

[28]  M. Arenales,et al.  An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems , 1995 .

[29]  Way Kuo,et al.  THREE DIMENSIONAL PALLETIZATION OF MIXED BOX SIZES , 1993 .

[30]  Vitória Pureza,et al.  Uma heurística de busca tabu simples para o problema de carregamento de paletes do produtor , 2003 .

[31]  Harold J. Steudel,et al.  Generating Pallet Loading Patterns: A Special Case of the Two-Dimensional Cutting Stock Problem , 1979 .

[32]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[33]  Heinrich Exeler Upper bounds for the homogeneous case of a two-dimensional packing problem , 1991, ZOR Methods Model. Oper. Res..

[34]  Guntram Scheithauer,et al.  The G4-Heuristic for the Pallet Loading Problem , 1996 .

[35]  Glaydston Mattos Ribeiro,et al.  Lagrangean relaxation with clusters and column generation for the manufacturer's pallet loading problem , 2007, Comput. Oper. Res..

[36]  Robert F. Dell,et al.  The minimum size instance of a Pallet Loading Problem equivalence class , 2007, Eur. J. Oper. Res..

[37]  Adam N. Letchford,et al.  Analysis of upper bounds for the Pallet Loading Problem , 2001, Eur. J. Oper. Res..

[38]  Ramón Alvarez-Valdés,et al.  A tabu search algorithm for the pallet loading problem , 2005, OR Spectr..

[39]  Kathryn A. Dowsland,et al.  The Three-Dimensional Pallet Chart: An Analysis of the Factors Affecting the Set of Feasible Layouts for a Class of Two-Dimensional Packing Problems , 1984 .

[40]  K. Dowsland An exact algorithm for the pallet loading problem , 1987 .

[41]  Guntram Scheithauer,et al.  A Polynomial Time Algorithm for the Guillotine Pallet Loading Problem , 1994 .

[42]  G. J. Kynch,et al.  Exact Solution of a Simple Cutting Problem , 1967, Oper. Res..

[43]  Kathryn A. Dowsland,et al.  A family of genetic algorithms for the pallet loading problem , 1996, Ann. Oper. Res..

[44]  Reinaldo Morabito,et al.  An effective recursive partitioning approach for the packing of identical rectangles in a rectangle , 2010, J. Oper. Res. Soc..

[45]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[46]  Reinaldo Morabito,et al.  Generating unconstrained two-dimensional non-guillotine cutting patterns by a Recursive Partitioning Algorithm , 2012, J. Oper. Res. Soc..

[47]  Frank W. Barnes Packing the maximum number of m × n tiles in a large p × q rectangle , 1979, Discret. Math..

[48]  Reinaldo Morabito,et al.  An L-approach for packing (ℓ, w)-rectangles into rectangular and L-shaped pieces , 2003, J. Oper. Res. Soc..

[49]  M. Z. Arslanov,et al.  Continued fractions in optimal cutting of a rectangular sheet into equal small rectangles , 2000, Eur. J. Oper. Res..

[50]  Josef Neliβen How to use structural constraints to compute an upper bound for the pallet loading problem , 1995 .

[51]  Reinaldo Morabito,et al.  A note on an L-approach for solving the manufacturer's pallet loading problem , 2005, J. Oper. Res. Soc..

[52]  Nicos Christofides,et al.  An Algorithm for Two-Dimensional Cutting Problems , 1977, Oper. Res..