Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

[1]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[2]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[3]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[4]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[5]  M. Grätzel,et al.  Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites. , 2014, Faraday discussions.

[6]  Shuzi Hayase,et al.  Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 Layers , 2014 .

[7]  A. Baldan,et al.  Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories , 2002 .

[8]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[9]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[10]  Yu Hou,et al.  Formation of high-quality perovskite thin film for planar heterojunction solar cells , 2015 .

[11]  Yixin Zhao,et al.  Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[12]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[13]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[14]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[15]  T. Bein,et al.  A Closer Look into Two-Step Perovskite Conversion with X-ray Scattering. , 2015, The journal of physical chemistry letters.

[16]  Yunlong Guo,et al.  Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber. , 2015, Journal of the American Chemical Society.

[17]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[18]  Yun Wang,et al.  Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization , 2014 .

[19]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[20]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[21]  Kai Zhu,et al.  Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. , 2014, Journal of the American Chemical Society.

[22]  Kidong Park,et al.  Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. , 2015, Nano letters.

[23]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[24]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[25]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[26]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[27]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[28]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[29]  H. Yang,et al.  Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells , 2015 .

[30]  M. Treviño,et al.  Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity , 2012, Scientific Reports.

[31]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[32]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[33]  Kai Zhu,et al.  Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells , 2015 .

[34]  J. Teuscher,et al.  Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange , 2015 .

[35]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[36]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[37]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.