Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors

In the striatum, stimulation of dopamine D2 receptors results in attenuation of glutamate responses. This effect is exerted in large part via negative regulation of AMPA glutamate receptors. Phosphorylation of the GluR1 subunit of the AMPA receptor has been proposed to play a critical role in the modulation of glutamate transmission, in striatal medium spiny neurons. Here, we have examined the effects of blockade of dopamine D2‐like receptors on the phosphorylation of GluR1 at the cAMP‐dependent protein kinase (PKA) site, Ser845, and at the protein kinase C and calcium/calmodulin‐dependent protein kinase II site, Ser831. Administration of haloperidol, an antipsychotic drug with dopamine D2 receptor antagonistic properties, increases the phosphorylation of GluR1 at Ser845, without affecting phosphorylation at Ser831. The same effect is observed using eticlopride, a selective dopamine D2 receptor antagonist. In contrast, administration of the dopamine D2‐like agonist, quinpirole, decreases GluR1 phosphorylation at Ser845. The increase in Ser845 phosphorylation produced by haloperidol is abolished in dopamine‐ and cAMP‐regulated phosphoprotein of 32 kDa (DARPP‐32) knockout mice, or in mice in which the PKA phosphorylation site on DARPP‐32 (i.e. Thr34) has been mutated (Thr34 → Ala mutant mice), and requires tonic activation of adenosine A2A receptors. These results demonstrate that dopamine D2 antagonists increase GluR1 phosphorylation at Ser845 by removing the inhibitory tone exerted by dopamine D2 receptors on the PKA/DARPP‐32 cascade.

[1]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Greengard,et al.  DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1 , 1984, Nature.

[3]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[4]  P. Greengard,et al.  Phosphorylation of DARPP-32 and protein phosphatase inhibitor-1 in rat choroid plexus: regulation by factors other than dopamine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[6]  E. M. Adler,et al.  Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. , 1992, Brain research. Molecular brain research.

[7]  J. Vanderhaeghen,et al.  Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Levine,et al.  Excitatory synaptic transmission in neostriatal neurons: regulation by cyclic AMP-dependent mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  R. Huganir,et al.  Characterization of Multiple Phosphorylation Sites on the AMPA Receptor GluR1 Subunit , 1996, Neuron.

[11]  R. Huganir,et al.  Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II* , 1997, The Journal of Biological Chemistry.

[12]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[13]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[14]  Paul Greengard,et al.  DARPP-32: Regulator of the Efficacy of Dopaminergic Neurotransmission , 1998 .

[15]  P. Greengard,et al.  Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin , 1999, Nature Neuroscience.

[16]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Greengard,et al.  Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Greengard,et al.  Regulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo , 2000, The Journal of Neuroscience.

[19]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[20]  J. Girault,et al.  Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum , 2001, Journal of neurochemistry.

[21]  M. Low,et al.  Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. , 2001, Journal of neurophysiology.

[22]  P. Greengard The neurobiology of slow synaptic transmission. , 2001, Science.

[23]  Paul Greengard,et al.  Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. , 2002, Journal of neurophysiology.

[24]  P. Greengard,et al.  Diverse Psychotomimetics Act Through a Common Signaling Pathway , 2003, Science.

[25]  P. Greengard,et al.  Opposite regulation by typical and atypical anti‐psychotics of ERK1/2, CREB and Elk‐1 phosphorylation in mouse dorsal striatum , 2003, Journal of neurochemistry.

[26]  J. Lipski,et al.  Receptor subtype-specific modulation by dopamine of glutamatergic responses in striatal medium spiny neurons , 2003, Brain Research.

[27]  C. Cepeda,et al.  Modulation of AMPA currents by D2 dopamine receptors in striatal medium‐sized spiny neurons: are dendrites necessary? , 2004, The European journal of neuroscience.

[28]  S. Mangiavacchi,et al.  D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A , 2004, Journal of neurochemistry.