Lipids and lipid metabolism in eukaryotic algae.

Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

[1]  L. Ericson,et al.  The characterisation and cyclic production of a highly unsaturated homoserine lipid in Chlorella minutissima. , 1996, Biochimica et biophysica acta.

[2]  L. Žilka,et al.  Gas chromatographic analysis of the higher fatty acids of the alga Chlorella vulgaris (pyrenoidosa). , 1972, Journal of chromatography.

[3]  Malcolm R. Brown,et al.  EFFECTS OF HARVEST STAGE AND LIGHT ON THE BIOCHEMICAL COMPOSITION OF THE DIATOM THALASSIOSIRA PSEUDONANA 1 , 1996 .

[4]  T. Munnik,et al.  Polar glycerolipids of Chlamydomonas moewusii. , 2000, Phytochemistry.

[5]  Y. K. Lee,et al.  Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1 , 1997, Journal of Applied Phycology.

[6]  G. Guella,et al.  A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[7]  Wenyu Yang,et al.  Membrane lipid biosynthesis in Chlamydomonas reinhardtii: ethanolaminephosphotransferase is capable of synthesizing both phosphatidylcholine and phosphatidylethanolamine. , 2004, Archives of biochemistry and biophysics.

[8]  B. Allard,et al.  Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. , 2000, Phytochemistry.

[9]  I. Buttino,et al.  Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytes , 2003, Molecular reproduction and development.

[10]  Akihiko Kawaguchi,et al.  Glycerolipid synthesis in Chlorella kessleri 11h. I. Existence of a eukaryotic pathway. , 2003, Biochimica et biophysica acta.

[11]  N. Sato,et al.  Contribution of lowered unsaturation levels of chloroplast lipids to high temperature tolerance of photosynthesis in Chlamydomonas reinhardtii , 1996 .

[12]  N. Murata Molecular Species Composition of Phosphatidylglycerols from Chilling-Sensitive and Chilling-Resistant Plants , 1983 .

[13]  T. S. Moore,et al.  Membrane lipid biosynthesis in Chlamydomonas reinhardtii. In vitro biosynthesis of diacylglyceryltrimethylhomoserine. , 2001, Plant physiology.

[14]  Akihiko Kawaguchi,et al.  Glycerolipid synthesis in Chlorella kessleri 11 h. II. Effect of the CO2 concentration during growth. , 2003, Biochimica et biophysica acta.

[15]  C. Giroud,et al.  Lipids of Chlamydomonas reinhardtii. Analysis of Molecular Species and Intracellular Site(s) of Biosynthesis , 1988 .

[16]  G. Napolitano THE RELATIONSHIP OF LIPIDS WITH LIGHT AND CHLOROPHYLL MEASUREMENTS IN FRESHWATER ALGAE AND PERIPHYTON 1 , 1994 .

[17]  P. Bigler,et al.  Phosphatidyl-O-[N-(2-Hydroxyethyl)Glycine] (PHEG), a New Glycerophospholipid from Brown Algae (Phaeophyceae) , 1995 .

[18]  Feng Chen,et al.  Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. , 2004, Journal of agricultural and food chemistry.

[19]  C. Benning,et al.  Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. , 1995, Archives of biochemistry and biophysics.

[20]  S. Khotimchenko,et al.  Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht , 2004 .

[21]  J. Brenna,et al.  Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. , 2002, Analytical biochemistry.

[22]  J. Napier,et al.  Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants , 2004, Nature Biotechnology.

[23]  D. Kyle Bioproduction of docosahexaenoic acid (DHA) by microalgae , 1992 .

[24]  J. Browse,et al.  Production of Polyunsaturated Fatty Acids by Polyketide Synthases in Both Prokaryotes and Eukaryotes , 2001, Science.

[25]  E. N. Hegseth,et al.  Seasonal variation in lipid and fatty acid composition of ice algae from the Barents Sea , 1998, Polar Biology.

[26]  J. Harwood Membrane Lipids in Algae , 1998 .

[27]  Hidetaka Tatsuzawa,et al.  FATTY ACID AND LIPID COMPOSITION OF THE ACIDOPHILIC GREEN ALGA CHLAMYDOMONAS SP. 1 , 1996 .

[28]  G. A. Thompson,et al.  Lipids and membrane function in green algae. , 1996, Biochimica et biophysica acta.

[29]  Z. Cohen,et al.  Elucidation of the Biosynthesis of Eicosapentaenoic Acid in the Microalga Porphyridium cruentum (II. Studies with Radiolabeled Precursors) , 1997, Plant physiology.

[30]  T. Tonon,et al.  Fatty acid desaturases from the microalga Thalassiosira pseudonana , 2005, The FEBS journal.

[31]  Waldemar Eichenberger,et al.  Lipids of Pavlova lutheri: Cellular site and metabolic role of DGCC , 1997 .

[32]  P. Roessler,et al.  A mutant of Nannochloropsis deficient in eicosapentaenoic acid production , 1995 .

[33]  T. Tonon,et al.  Identification of a very long chain polyunsaturated fatty acid Δ4‐desaturase from the microalga Pavlova lutheri 1 , 2003, FEBS letters.

[34]  M. Yoshimoto,et al.  Composition and positional distribution of fatty acids in polar lipids from Chlorella ellipsoidea differing in chilling susceptibility and frost hardiness , 1993 .

[35]  M. Cabrini,et al.  The insidious effect of diatoms on copepod reproduction , 1999, Nature.

[36]  T. Miyamoto,et al.  Two Low-temperature-inducible Chlorella Genes for Δ12 and ω-3 Fatty Acid Desaturase (FAD): Isolation of Δ12 and ω-3 fad cDNA Clones,… , 2002 .

[37]  F. Jüttner,et al.  Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms , 1996 .

[38]  V. Dembitsky,et al.  Natural halogenated fatty acids: their analogues and derivatives. , 2002, Progress in lipid research.

[39]  M. Fuhrmann,et al.  Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. , 2002, Protist.

[40]  L. Chuang,et al.  (Biochem. J., 384:357-366)Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid , 2004 .

[41]  S. Khotimchenko,et al.  Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. , 2005, Phytochemistry.

[42]  P. Siegenthaler,et al.  Lipids in Photosynthesis: Structure, Function and Genetics , 1998, Advances in Photosynthesis and Respiration.

[43]  K. Reitan,et al.  EFFECT OF NUTRIENT LIMITATION ON FATTY ACID AND LIPID CONTENT OF MARINE MICROALGAE 1 , 1994 .

[44]  I. Buttino,et al.  A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos , 2003, Journal of Experimental Biology.

[45]  T. Munnik,et al.  Phospholipid signalling in plants. , 1998, Biochimica et biophysica acta.

[46]  B. Qi,et al.  The variant ‘his‐box’ of the C18‐Δ9‐PUFA‐specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity , 2003, FEBS letters.

[47]  S. Khotimchenko,et al.  An Inositol-Containing Sphingolipid from the Red Alga Gracilaria verrucosa , 2004, Russian Journal of Bioorganic Chemistry.

[48]  E. Heinz,et al.  Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. , 2005, Trends in plant science.

[49]  G. L. Klyachko-Gurvich,et al.  EFFECT OF CO2 CONCENTRATION ON THE FATTY ACID COMPOSITION OF LIPIDS IN CHLAMYDOMONAS REINHARDTII CIA-3, A MUTANT DEFICIENT IN CO2-CONCENTRATING MECHAN ISM , 1998 .

[50]  E. Blée,et al.  Phytooxylipins and plant defense reactions. , 1998, Progress in lipid research.

[51]  D. Greenway,et al.  Effects of environmental factors and metals on selenastrum capricornutum lipids , 1998 .

[52]  E. Heinz,et al.  Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. , 2002, European journal of biochemistry.

[53]  C. Bigogno,et al.  Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). , 2002, Phytochemistry.

[54]  J. Harwood,et al.  Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. , 2006, Phytochemistry.

[55]  W. Gerwick Structure and biosynthesis of marine algal oxylipins. , 1994, Biochimica et biophysica acta.

[56]  Chulwoo Park,et al.  ACCLIMATION OF PROROCENTRUM MINIMUM (DINOPHYCEAE) TO PROLONGED DARKNESS BY USE OF AN ALTERNATIVE CARBON SOURCE FROM TRIACYLGLYCERIDES AND GALACTOLIPIDS , 1999 .

[57]  T. Miyamoto,et al.  Two low-temperature-inducible Chlorella genes for delta12 and omega-3 fatty acid desaturase (FAD): isolation of delta12 and omega-3 fad cDNA clones, expression of delta12 fad in Saccharomyces cerevisiae, and expression of omega-3 fad in Nicotiana tabacum. , 2002, Bioscience, biotechnology, and biochemistry.

[58]  C. Largeau,et al.  C31-C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. , 2004, Phytochemistry.

[59]  S. Didi-Cohen,et al.  Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids , 2000, Lipids.

[60]  T. Yokochi,et al.  Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21 , 1997 .

[61]  M. Hanikenne Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. , 2003, The New phytologist.

[62]  T. Zank,et al.  Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. , 2003, Journal of plant physiology.

[63]  J. M. Fernández-Sevilla,et al.  Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. , 2000, Phytochemistry.

[64]  Z. Wen,et al.  Heterotrophic production of eicosapentaenoic acid by microalgae. , 2003, Biotechnology advances.

[65]  J. Sajiki,et al.  Identification of eicosanoids in the red algae, Gracilaria asiatica, using high-performance liquid chromatography and electrospray ionization mass spectrometry. , 1998, Journal of chromatography. A.

[66]  C. Benning,et al.  A Null Mutant of Synechococcus sp. PCC7942 Deficient in the Sulfolipid Sulfoquinovosyl Diacylglycerol (*) , 1996, The Journal of Biological Chemistry.

[67]  T. McMeekin,et al.  The Biotechnological Potential of Thraustochytrids , 1999, Marine Biotechnology.

[68]  Paulina Goldshlag,et al.  Salt Induction of Fatty Acid Elongase and Membrane Lipid Modifications in the Extreme Halotolerant Alga Dunaliella salina 1 , 2002, Plant Physiology.

[69]  B. Qi,et al.  Expression of the Isochrysis C18-Δ9 Polyunsaturated Fatty Acid Specific Elongase Component Alters Arabidopsis Glycerolipid Profiles1 , 2004, Plant Physiology.

[70]  W. Gerwick,et al.  Biogenesis and biological function of marine algal oxylipins. , 1999, Advances in experimental medicine and biology.

[71]  G. L. Klyachko-Gurvich,et al.  Changes in Lipid Metabolism during Adaptation of the Dunaliella salina Photosynthetic Apparatus to High CO2 Concentration , 2004, Russian Journal of Plant Physiology.

[72]  A. C. Guedes,et al.  Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. , 2003, Journal of agricultural and food chemistry.

[73]  Petra Cirpus,et al.  Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Delta4-fatty acyl group desaturase. , 2003, Biochemistry.

[74]  J. Pronk,et al.  Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol , 2003, Applied Microbiology and Biotechnology.

[75]  M. Attias,et al.  Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. , 2002, Environmental pollution.

[76]  J. Napier,et al.  Identification of a cDNA encoding a novel C18‐Δ9 polyunsaturated fatty acid‐specific elongating activity from the docosahexaenoic acid (DHA)‐producing microalga, Isochrysis galbana 1 , 2002, FEBS letters.

[77]  P. Mazliak,et al.  Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance , 1995 .

[78]  A. T. James,et al.  Lipid Biochemistry: An Introduction , 1971 .

[79]  M. Blondel,et al.  Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla , 2004, Journal of Experimental Biology.

[80]  T. Munnik,et al.  Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. , 2001, The Plant journal : for cell and molecular biology.

[81]  V. Dembitsky Betaine ether-linked glycerolipids: chemistry and biology. , 1996, Progress in lipid research.

[82]  S. Teshima,et al.  The Fatty Acid Composition of Seaweeds Exposed to Different Levels of Light Intensity and Salinity , 1998 .

[83]  T. Higashihara,et al.  Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21 , 1998, Applied Microbiology and Biotechnology.

[84]  M. S. Soares,et al.  Effects of cadmium on Euglena gracilis membrane lipids. , 1996, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[85]  T. Volova,et al.  A Temperature Dependence of the Intra- and Extracellular Fatty-Acid Composition of Green Algae and Cyanobacterium , 2003, Russian Journal of Plant Physiology.

[86]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[87]  G. Pohnert,et al.  Biosynthesis of the algal pheromone hormosirene by the freshwater diatom Gomphonema parvulum (Bacillariophyceae) , 1996 .

[88]  G. Pohnert Phospholipase A2 Activity Triggers the Wound-Activated Chemical Defense in the Diatom Thalassiosira rotula , 2002, Plant Physiology.

[89]  M. Gurr,et al.  The biosynthesis of polyunsaturated fatty acids by photosynthetic tissue. The composition of phosphatidyl choline species in Chlorella vulgaris during the formation of linoleic acid. , 1970, European Journal of Biochemistry.

[90]  I. Karube,et al.  Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions , 1997, Journal of Applied Phycology.

[91]  S. Didi-Cohen,et al.  BIOSYNTHESIS OF EICOSAPENTAENOIC ACID (EPA) IN THE FRESHWATER EUSTIGMATOPHYTE MONODUS SUBTERRANEUS (EUSTIGMATOPHYCEAE)1 , 2002 .

[92]  Christoph Benning,et al.  Annotation of Genes Involved in Glycerolipid Biosynthesis in Chlamydomonas reinhardtii: Discovery of the Betaine Lipid Synthase BTA1Cr , 2005, Eukaryotic Cell.

[93]  L. Chuang,et al.  Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. , 2004, The Biochemical journal.

[94]  X. Qiu,et al.  Identification of a (cid:1) 4 Fatty Acid Desaturase from Thraustochytrium sp. Involved in the Biosynthesis of Docosahexanoic Acid by Heterologous Expression in Saccharomyces cerevisiae and Brassica , 2001 .

[95]  N. Sato,et al.  Environmental effects on acidic lipids of thylakoid membranes. , 2000, Biochemical Society transactions.

[96]  M. Yamada,et al.  BIOSYNTHESIS OF POLYUNSATURATED FATTY ACIDS IN THE MARINE DIATOM, PHAEODACTYLUM TRICORNUTUM , 1994 .

[97]  A. Vonshak,et al.  Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. , 2002, Phytochemistry.

[98]  A. Fontana,et al.  New birth-control aldehydes from the marine diatom Skeletonema costatum: characterization and biogenesis , 2002 .

[99]  C. Bigogno,et al.  THE EFFECT OF GROWTH TEMPERATURE AND CULTURE DENSITY ON THE MOLECULAR SPECIES COMPOSITION OF THE GALACTOLIPIDS IN THE RED MICROALGA PORPHYHDIUM CRUENTUM (RHODOPHYTA) 1 , 1997 .

[100]  E. Belarbi,et al.  Acyl lipids of three microalgae , 1998 .

[101]  K. Gao,et al.  EFFECTS OF LOWERING TEMPERATURE DURING CULTURE ON THE PRODUCTION OF POLYUNSATURATED FATTY ACIDS IN THE MARINE DIATOM PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) 1 , 2004 .

[102]  J. Harwood,et al.  Lipid Metabolism in Algae , 1989 .

[103]  David G. Mann,et al.  Algae: An Introduction to Phycology , 1996 .

[104]  K. Cooksey,et al.  TRIGLYCERIDE ACCUMULATION AND FATTY ACID PROFILE CHANGES IN CHLORELLA (CHLOROPHYTA) DURING HIGH pH‐INDUCED CELL CYCLE INHIBITION 1 , 1990 .

[105]  L. Mydlarz,et al.  Identification of hydroxy fatty acids by liquid chromatography-atmospheric pressure chemical ionization mass spectroscopy in Euglena gracilis. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[106]  T. Munnik,et al.  Substrate preference of stress-activated phospholipase D in Chlamydomonas and its contribution to PA formation. , 2003, The Plant journal : for cell and molecular biology.

[107]  J. Beardall,et al.  Fatty acids of six Codium species from southeast Australia , 1998 .

[108]  T. Higashihara,et al.  Production of docosahexaenoic and docosapentaenoic acids bySchizochytrium sp. isolated from Yap Islands , 1996 .

[109]  Z. Cohen,et al.  Biosynthesis of eicosapentaenoic acid in the microalgaPorphyridium cruentum. I: The use of externally supplied fatty acids , 1996, Lipids.

[110]  B. Allard,et al.  High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus conmmunis and Tetraedron minimum. , 2001, Phytochemistry.

[111]  P. Benfey,et al.  Editorial overviewGrowth and development: Something old, something new…. , 2004 .

[112]  J. Gallon,et al.  Biochemistry of the algae and cyanobacteria , 1988 .

[113]  Y. Kamisaka,et al.  Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization , 1996 .

[114]  B. Kloareg,et al.  The Innate Immunity of a Marine Red Alga Involves Oxylipins from Both the Eicosanoid and Octadecanoid Pathways1[w] , 2004, Plant Physiology.

[115]  H. Hop,et al.  Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea , 1998, Polar Biology.

[116]  D. Kreeger,et al.  EFFECT OF NUTRIENT AVAILABILITY ON THE BIOCHEMICAL AND ELEMENTAL STOICHIOMETRY IN THE FRESHWATER DIATOM STEPHANODISCUS MINUTULUS (BACILLARIOPHYCEAE)* , 2000, Journal of phycology.

[117]  N. Divecha,et al.  Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. , 2001, The Biochemical journal.

[118]  T. Řezanka,et al.  Variability of the fatty acids of the marine green algae belonging to the genus Codium , 2003 .

[119]  T. S. Moore,et al.  Membrane lipid biosynthesis in Chlamydomonas reinhardtii. Partial characterization of CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase , 2003 .

[120]  P. Shrestha,et al.  NITROGEN STARVATION INDUCES THE ACCUMULATION OF ARACHIDONIC ACID IN THE FRESHWATER GREEN ALGA PARIETOCHLORIS INCISA (TREBUXIOPHYCEAE) 1 , 2002 .

[121]  B. Beker,et al.  Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. , 2004, Phytochemistry.

[122]  T. Kajiwara,et al.  C6-Aldehyde Formation by Fatty Acid Hydroperoxide Lyase in the Brown Alga Laminaria angustata , 2003, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[123]  Gary Dobson,et al.  Lipid metabolism in cultured lichen photobionts with different phosphorus status. , 2003, Phytochemistry.

[124]  C. Largeau,et al.  Botryococcus braunii: a rich source for hydrocarbons and related ether lipids , 2005, Applied Microbiology and Biotechnology.

[125]  T. Tonon,et al.  Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. , 2002, Phytochemistry.

[126]  W. Gerwick,et al.  Polyenoic fatty acid isomerase from the marine alga Ptilota filicina: protein characterization and functional expression of the cloned cDNA. , 2002, Archives of biochemistry and biophysics.

[127]  Liu Qy,et al.  Isolation of a gametophyte-specific cDNA encoding a lipoxygenase from the red alga Porphyra purpurea. , 1994 .

[128]  P. Roessler,et al.  RADIOLABELING STUDIES OF LIPIDS AND FATTY ACIDS IN NANNOCHLOROPSIS (EUSTIGMATOPHYCEAE), AN OLEAGINOUS MARINE ALGA 1 , 1994 .

[129]  L. Sijtsma,et al.  Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii , 1999 .

[130]  H. Moreau,et al.  In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. , 2005, The Biochemical journal.

[131]  L. Sijtsma,et al.  Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid , 2004, Applied Microbiology and Biotechnology.

[132]  J. Gouygou,et al.  Reassessment of lipid composition of the diatom, Skeletonema costatum , 1995 .

[133]  Xiao Qiu,et al.  Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants , 2005, Nature Biotechnology.

[134]  P. Chapman,et al.  LIPID COMPOSITION OF CHLORARACHNIOPHYTES (CHLORARACHNIOPHYCEAE) FROM THE GENERA BIGELOWIELLA, GYMNOCHLORA, AND LOTHARELLA 1 , 2005 .

[135]  W. Gerwick,et al.  5-Lipoxygenase-derived oxylipins from the red alga Rhodymenia pertusa. , 2000, Phytochemistry.

[136]  O. Ward,et al.  Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892 , 1996, World journal of microbiology & biotechnology.

[137]  R. Tremblay,et al.  Variation of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp. grown in a semicontinuous system , 2003 .

[138]  Hervé Moreau,et al.  Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesiss⃞s⃞ The online version of this article (available at http://www.jlr.org) contains an additional figure. Published, JLR Papers in Press, August 1, 2004. DOI 10.1194/jlr.M400181-JLR200 , 2004, Journal of Lipid Research.

[139]  S. Eberhard,et al.  A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. , 2004, European journal of biochemistry.

[140]  C. Benning,et al.  The Sulfolipids 2′-O-Acyl-Sulfoquinovosyldiacylglycerol and Sulfoquinovosyldiacylglycerol Are Absent from a Chlamydomonas reinhardtii Mutant Deleted in SQD11 , 2003, Plant Physiology.

[141]  S. Popov,et al.  Comparative Study of the Volatile Compounds from Some Black Sea Brown Algae , 2002 .

[142]  Stefan Schouten,et al.  Cell wall-specific ω-hydroxy fatty acids in some freshwater green microalgae , 1998 .

[143]  D. Kyle,et al.  Industrial Applications of Single Cell Oils , 1992 .

[144]  Motohide Aoki,et al.  Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II , 2003, Planta.

[145]  T. Swain,et al.  Plant Lipid Biochemistry , 1973 .

[146]  M. D. de Swaaf,et al.  Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. , 2003, Journal of biotechnology.

[147]  A. Rady,et al.  Effect of Phosphorus Starvation on Growth, Photo- synthesis and Some Metabolic Processes in the Uni- cellular Green Alga Chlorella kessleri , 1995 .

[148]  C. Bigogno,et al.  Salicylhydroxamic acid inhibits delta6 desaturation in the microalga Porphyridium cruentum. , 1999, Biochimica et biophysica acta.

[149]  A. Trémolières,et al.  Importance of trans-Δ3-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas , 2002 .

[150]  T. Tonon,et al.  Identification of a fatty acid Δ11‐desaturase from the microalga Thalassiosira pseudonana 1 , 2004 .

[151]  T. Munnik,et al.  Phospholipid-based signaling in plants. , 2003, Annual review of plant biology.

[152]  A. Fontana,et al.  Detection of short-chain aldehydes in marine organisms: the diatom Thalassiosira rotula , 2002 .

[153]  V. Smetácek,et al.  Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom , 2004, Nature.

[154]  A. Fontana,et al.  The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. , 2004, Biochimica et biophysica acta.

[155]  K. Matsui,et al.  Hydroperoxy-arachidonic acid mediated n-hexanal and (Z)-3- and (E)-2-nonenal formation in Laminaria angustata. , 2003, Phytochemistry.

[156]  C. Bigogno,et al.  Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): Radiolabeling studies , 2002, Lipids.

[157]  N. Sato,et al.  Cloning of a gene for chloroplast omega6 desaturase of a green alga, Chlamydomonas reinhardtii. , 1997, Journal of biochemistry.

[158]  E. Spijkerman,et al.  Fatty Acid Patterns in Chlamydomonas sp. as a Marker for Nutritional Regimes and Temperature under Extremely Acidic Conditions , 2004, Microbial Ecology.

[159]  G. Pohnert Wound-Activated Chemical Defense in Unicellular Planktonic Algae. , 2000, Angewandte Chemie.

[160]  X. Qiu Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. , 2003, Prostaglandins, leukotrienes, and essential fatty acids.

[161]  G. Lambrinidis,et al.  Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures , 2002 .

[162]  M. Ishikawa,et al.  Effects of Nitrogen and Phosphorus on the Growth and Fatty Acid Composition of Ulva pertusa Kjellman (Chlorophyta) , 1996 .

[163]  V. Vantrepotte,et al.  GROWTH INHIBITION AND TOXICITY OF THE DIATOM ALDEHYDE 2‐TRANS, 4‐TRANS‐DECADIENAL ON THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) 1 , 2005 .

[164]  T. Munnik,et al.  Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan , 1998, Planta.

[165]  A. Otero,et al.  The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture , 2004 .