Practical Long-Distance Side-Channel-Free Quantum Key Distribution

[1]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[2]  Qinan Wang,et al.  Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols , 2017 .

[3]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  Xiang‐Bin Wang,et al.  Reexamination of the decoy-state quantum key distribution with an unstable source , 2010 .

[5]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[6]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[7]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[8]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[9]  Cheng-Zhi Peng,et al.  Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source , 2007 .

[10]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[11]  Hai Xu,et al.  Sending-or-not-sending twin-field quantum key distribution in practice , 2018, Scientific Reports.

[12]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with both source errors and statistical fluctuations , 2009, 0902.4660.

[13]  M. Hayashi,et al.  Security analysis of the decoy method with the Bennett–Brassard 1984 protocol for finite key lengths , 2013, 1302.4139.

[14]  Chun-Mei Zhang,et al.  Twin-field quantum key distribution with modified coherent states. , 2019, Optics letters.

[15]  Xiang‐Bin Wang,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method , 2014, 1410.3265.

[16]  Shuang Wang,et al.  Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution. , 2015, Physical review letters.

[17]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[18]  H. F. Chau Quantum key distribution using qudits that each encode one bit of raw key , 2015 .

[19]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[20]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[21]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[22]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[23]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[24]  G. Guo,et al.  Measurement-device-independent quantum key distribution robust against environmental disturbances , 2017 .

[25]  Jian-Wei Pan,et al.  General theory of decoy-state quantum cryptography with source errors , 2006, quant-ph/0612121.

[26]  Feihu Xu,et al.  Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution , 2014, 1406.0188.

[27]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[28]  Xiang‐Bin Wang,et al.  Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors , 2012, 1207.0392.

[29]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[30]  Wei Cui,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2013, Nature Communications.

[31]  Masahito Hayashi Optimal decoy intensity for decoy quantum key distribution , 2013 .

[32]  Horace P. Yuen,et al.  Quantum amplifiers, quantum duplicators and quantum cryptography , 1996 .

[33]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[34]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[35]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[36]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[37]  Y.-H. Zhou,et al.  Making the decoy-state measurement-device-independent quantum key distribution practically useful , 2015, 1502.01262.

[38]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[39]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[40]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[41]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[42]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[43]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[44]  Masato Koashi,et al.  Simple security proof of quantum key distribution based on complementarity , 2009 .

[45]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[46]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[47]  Zong-Wen Yu,et al.  Twin-field quantum key distribution with large misalignment error , 2018, Physical Review A.