Canonical Trees, Compact Prefix-Free Codes, and Sums of Unit Fractions: A Probabilistic Analysis

For fixed $t\ge 2$, we consider the class of representations of $1$ as a sum of unit fractions whose denominators are powers of $t$, or equivalently the class of canonical compact $t$-ary Huffman codes, or equivalently rooted $t$-ary plane “canonical” trees. We study the probabilistic behavior of the height (limit distribution is shown to be normal), the number of distinct summands (normal distribution), the path length (normal distribution), the width (main term of the expectation and concentration property), and the number of leaves at maximum distance from the root (discrete distribution).

[1]  David W. Boyd The Asymptotic Number of Solutions of a Diophantine Equation from Coding Theory , 1975, J. Comb. Theory, Ser. A.

[2]  Martin C. Tangora Level Number Sequences of Trees and the Lambda Algebra , 1991, Eur. J. Comb..

[3]  Michael Drmota,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[4]  Edward A. Bender,et al.  Locally Restricted Compositions I. Restricted Adjacent Differences , 2005, Electron. J. Comb..

[5]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[6]  Edward A. Bender,et al.  Locally Restricted Compositions IV. Nearly Free Large Parts and Gap-Freeness , 2012, Electron. J. Comb..

[7]  Hsien-Kuei Hwang,et al.  Profiles of random trees: correlation and width of random recursive trees and binary search trees , 2005, Advances in Applied Probability.

[8]  Brockway McMillan,et al.  Two inequalities implied by unique decipherability , 1956, IRE Trans. Inf. Theory.

[9]  L. Bruce Richmond,et al.  The Distribution of Heights of Binary Trees and Other Simple Trees , 1993, Combinatorics, Probability and Computing.

[10]  Edward A. Bender,et al.  Locally Restricted Compositions II. General Restrictions and Infinite Matrices , 2009, Electron. J. Comb..

[11]  Edward A. Bender,et al.  Locally Restricted Compositions III. Adjacent-Part Periodic Inequalities , 2010, Electron. J. Comb..

[12]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[13]  Lajos Takács On the total heights of random rooted trees , 1992 .

[14]  Luc Devroye,et al.  The height of increasing trees , 2008, Random Struct. Algorithms.

[15]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[16]  Arnold Knopfmacher,et al.  Compositions with distinct parts , 1995 .

[17]  R. E. Eaves A Sufficient Condition for the Convergence of an Infinite Determinant , 1970 .

[18]  Clemens Heuberger,et al.  Analysis of parameters of trees corresponding to Huffman codes and sums of unit fractions , 2013, ANALCO.

[19]  T. F. Móri On random trees , 2002 .

[20]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[21]  Hosam M. Mahmoud Limiting Distributions for Path Lengths in Recursive Trees , 1991 .

[22]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[23]  Lajos Takács,et al.  Limit distributions for queues and random rooted trees , 1993 .

[24]  Leon Gordon Kraft,et al.  A device for quantizing, grouping, and coding amplitude-modulated pulses , 1949 .

[25]  Helmut Prodinger,et al.  The Number of Huffman Codes, Compact Trees, and Sums of Unit Fractions , 2013, IEEE Transactions on Information Theory.

[26]  Helmut Prodinger,et al.  Level number sequences for trees , 1987, Discret. Math..