Extending Population-Based Incremental Learning to Continuous Search Spaces

An alternative to Darwinian-like artificial evolution is offered by Population-Based Incremental Learning (PBIL): this algorithm memorizes the best past individuals and uses this memory as a distribution, to generate the next population from scratch.

[1]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[2]  David E. Goldberg,et al.  Genetic Algorithm Difficulty and the Modality of Fitness Landscapes , 1994, FOGA.

[3]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[4]  S. Baluja An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics , 1995 .

[5]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[6]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[7]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[8]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[9]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[10]  Michèle Sebag,et al.  Mutation by Imitation in Boolean Evolution Strategies , 1996, PPSN.

[11]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[12]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[13]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[14]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..