SARS-CoV-2 surveillance in Italy through phylogenomic inferences based on Hamming distances derived from pan-SNPs, -MNPs and -InDels

[1]  F. Gao,et al.  Data-driven identification of SARS-CoV-2 subpopulations using PhenoGraph and binary-coded genomic data , 2021, Briefings Bioinform..

[2]  P. Hotez,et al.  The emergence and transmission of COVID-19 in European countries, 2019–2020: a comprehensive review of timelines, cases and containment , 2021, International health.

[3]  D. Roberts,et al.  Dating first cases of COVID-19 , 2021, PLoS pathogens.

[4]  S. Panda,et al.  Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees , 2021, bioRxiv.

[5]  Ira W. Deveson,et al.  Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch , 2021, Wellcome open research.

[6]  E. Holmes,et al.  Emergence and Spread of SARS-CoV-2 Lineages B.1.1.7 and P.1 in Italy , 2021, medRxiv.

[7]  M. Kuroda,et al.  Three SARS-CoV-2 reinfection cases by the new Variant of Concern (VOC) P.1/501Y.V3 , 2021 .

[8]  L. Danon,et al.  Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study , 2021, BMJ.

[9]  Carl A. B. Pearson,et al.  Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England , 2021, Science.

[10]  L. Morris,et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma , 2021, Nature Medicine.

[11]  Vineet D. Menachery,et al.  Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera , 2021, Nature Medicine.

[12]  O. Pybus,et al.  Addendum: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2021, Nature Microbiology.

[13]  W. Burgers,et al.  SARS-CoV-2 evolution and vaccines: cause for concern? , 2021, The Lancet Respiratory Medicine.

[14]  Vineet D. Menachery,et al.  Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera , 2021, bioRxiv.

[15]  K. Kupferschmidt New mutations raise specter of 'immune escape'. , 2021, Science.

[16]  K. Kupferschmidt New coronavirus variants could cause more reinfections, require updated vaccines , 2021 .

[17]  E. Holmes,et al.  Bioinformatics resources for SARS-CoV-2 discovery and surveillance , 2021, Briefings Bioinform..

[18]  Trevor Bedford,et al.  Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens , 2021, J. Open Source Softw..

[19]  N. Loman,et al.  Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data , 2021, medRxiv.

[20]  Guohui Fan,et al.  RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study , 2021, The Lancet.

[21]  Updated rapid risk assessment from ECDC on the risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA - first update. , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[22]  A. Tanuri,et al.  Genomic Characterization of a Novel SARS-CoV-2 Lineage from Rio de Janeiro, Brazil , 2020, Journal of Virology.

[23]  Paolo Calistri,et al.  Genomic Epidemiology of the First Wave of SARS-CoV-2 in Italy , 2020, Viruses.

[24]  W. Ruppitsch,et al.  Virulence characterization and comparative genomics of Listeria monocytogenes sequence type 155 strains , 2020, BMC Genomics.

[25]  M. Worobey,et al.  Timing the SARS-CoV-2 Index Case in Hubei Province , 2020, bioRxiv.

[26]  M. Koopmans SARS-CoV-2 and the human-animal interface: outbreaks on mink farms , 2020, The Lancet Infectious Diseases.

[27]  G. Apolone,et al.  Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy , 2020, Tumori.

[28]  K. Bindayna,et al.  Variant analysis of SARS-CoV-2 genomes in the Middle East , 2020, bioRxiv.

[29]  M. Aepfelbacher,et al.  SARS Coronavirus-2 variant tracing within the first Coronavirus Disease 19 clusters in northern Germany , 2020, Clinical Microbiology and Infection.

[30]  Tsuyoshi Sekizuka,et al.  Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR , 2020, PloS one.

[31]  Joel O. Wertheim,et al.  The emergence of SARS-CoV-2 in Europe and North America , 2020, Science.

[32]  Michael G. Klein,et al.  COVID-19 Models for Hospital Surge Capacity Planning: A Systematic Review , 2020, Disaster Medicine and Public Health Preparedness.

[33]  Indrajit Saha,et al.  Inferring the genetic variability in Indian SARS-CoV-2 genomes using consensus of multiple sequence alignment techniques , 2020, Infection, Genetics and Evolution.

[34]  Yoshiro Saito,et al.  Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses , 2020, Scientific Reports.

[35]  I. Hajirasouliha,et al.  coronaSPAdes: from biosynthetic gene clusters to RNA viral assemblies , 2020, bioRxiv.

[36]  F. Giardina,et al.  Genomic epidemiology of SARS-CoV-2 reveals multiple lineages and early spread of SARS-CoV-2 infections in Lombardy, Italy , 2020, Nature Communications.

[37]  Edward C. Holmes,et al.  A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2020, Nature Microbiology.

[38]  Enrique Fernández-Macías,et al.  Employment impact of Covid-19 crisis: from short term effects to long terms prospects , 2020, Journal of Industrial and Business Economics.

[39]  Jnanendra Prasad Sarkar,et al.  Genome-wide analysis of Indian SARS-CoV-2 genomes for the identification of genetic mutation and SNP , 2020, Infection, Genetics and Evolution.

[40]  G. La Rosa,et al.  SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring , 2020, Science of The Total Environment.

[41]  Zoë B. Cullen,et al.  The impact of COVID-19 on small business outcomes and expectations , 2020, Proceedings of the National Academy of Sciences.

[42]  B. Kocsis,et al.  A Core Genome Multilocus Sequence Typing Scheme for Pseudomonas aeruginosa , 2020, Frontiers in Microbiology.

[43]  G. A. Efimov,et al.  SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors , 2020, Immunity.

[44]  Eric P. Nawrocki,et al.  Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research , 2020, Briefings Bioinform..

[45]  Ogun Adebali,et al.  Phylogenetic analysis of SARS-CoV-2 genomes in Turkey , 2020, bioRxiv.

[46]  Zhicheng Li,et al.  A computational toolset for rapid identification of SARS-CoV-2, other viruses and microorganisms from sequencing data , 2020, bioRxiv.

[47]  Ziheng Yang,et al.  Phylogenetic tree building in the genomic age , 2020, Nature Reviews Genetics.

[48]  C. Nejjari,et al.  Large scale genomic analysis of 3067 SARS-CoV-2 genomes reveals a clonal geo-distribution and a rich genetic variations of hotspots mutations , 2020, bioRxiv.

[49]  P. Calistri,et al.  A “One-Health” approach for diagnosis and molecular characterization of SARS-CoV-2 in Italy , 2020, One Health.

[50]  M. Agha,et al.  The socio-economic implications of the coronavirus pandemic (COVID-19): A review , 2020, International Journal of Surgery.

[51]  A. Lorusso,et al.  Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses , 2020, Veterinary Microbiology.

[52]  M. Ciccozzi,et al.  Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant , 2020, Journal of Translational Medicine.

[53]  Anibal Diogenes,et al.  Coronavirus Disease 19 (COVID-19): Implications for Clinical Dental Care , 2020, Journal of Endodontics.

[54]  Andrew Rambaut,et al.  Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic , 2020, Nature Microbiology.

[55]  Rob Phillips,et al.  SARS-CoV-2 (COVID-19) by the numbers , 2020, eLife.

[56]  E. Holmes,et al.  A Genomic Perspective on the Origin and Emergence of SARS-CoV-2 , 2020, Cell.

[57]  Yufeng Shen,et al.  Whole Genome De Novo Variant Identification with FreeBayes and Neural Network Approaches , 2020, bioRxiv.

[58]  Jessica T Davis,et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak , 2020, Science.

[59]  A. M. Leontovich,et al.  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 , 2020, Nature Microbiology.

[60]  Ting Yu,et al.  Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study , 2020, The Lancet Respiratory Medicine.

[61]  P. Calistri,et al.  Novel coronavirus (COVID‑19) epidemic: a veterinary perspective. , 2020, Veterinaria italiana.

[62]  Jessica T Davis,et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak , 2020, medRxiv.

[63]  A. Brisabois,et al.  Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France , 2020, BMC Genomics.

[64]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.

[65]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[66]  E. Holmes,et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding , 2020, The Lancet.

[67]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[68]  F. Weill,et al.  A Simple and Robust Statistical Method to Define Genetic Relatedness of Samples Related to Outbreaks at the Genomic Scale – Application to Retrospective Salmonella Foodborne Outbreak Investigations , 2019, Front. Microbiol..

[69]  R. Williams,et al.  Phylogenetic Analysis of Mycobacterium tuberculosis Strains in Wales by Use of Core Genome Multilocus Sequence Typing To Analyze Whole-Genome Sequencing Data , 2019, Journal of Clinical Microbiology.

[70]  D. Zühlke,et al.  A Core Genome Multilocus Sequence Typing Scheme for Enterococcus faecalis , 2019, Journal of Clinical Microbiology.

[71]  P. Gunasekaran,et al.  Development and evaluation of a core genome multilocus sequence typing (cgMLST) scheme for Brucella spp. , 2019, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[72]  S. Carmichael,et al.  Variants , 2018, The Works of Aphra Behn.

[73]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[74]  Karthik Gangavarapu,et al.  An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar , 2018, Genome Biology.

[75]  Ignacio Ferrés,et al.  MLSTar: automatic multilocus sequence typing of bacterial genomes in R , 2018, PeerJ.

[76]  Publisher's Note , 2018, Anaesthesia.

[77]  Alexandre P. Francisco,et al.  GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens , 2017, bioRxiv.

[78]  Ning Wang,et al.  Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus , 2017, PLoS pathogens.

[79]  S. Edwards,et al.  Core Genome Multilocus Sequence Typing: a Standardized Approach for Molecular Typing of Mycoplasma gallisepticum , 2017, Journal of Clinical Microbiology.

[80]  Mirko Rossi,et al.  chewBBACA: A complete suite for gene-by-gene schema creation and strain identification , 2017, bioRxiv.

[81]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[82]  Yuelong Shu,et al.  GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[83]  Jin-Hyun Ahn,et al.  Analysis of single nucleotide polymorphism among Varicella-Zoster Virus and identification of vaccine-specific sites. , 2016, Virology.

[84]  M. Balaan,et al.  Acute Respiratory Distress Syndrome , 2016, Critical care nursing quarterly.

[85]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[86]  Jinling Huang,et al.  Horizontal gene transfer: building the web of life , 2015, Nature Reviews Genetics.

[87]  Dag Harmsen,et al.  Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based Typing of Listeria monocytogenes , 2015, Journal of Clinical Microbiology.

[88]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[89]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[90]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[91]  P. Woo,et al.  A novel MLST sequence type discovered in the first fatal case of Laribacter hongkongensis bacteremia clusters with the sequence types of other human isolates , 2014, Emerging Microbes & Infections.

[92]  B. Rannala,et al.  Molecular phylogenetics: principles and practice , 2012, Nature Reviews Genetics.

[93]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[94]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[95]  R. Durbin,et al.  Dindel: accurate indel calls from short-read data. , 2011, Genome research.

[96]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[97]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[98]  R. Sanjuán,et al.  Viral Mutation Rates , 2010, Journal of Virology.

[99]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[100]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[101]  S. Brisse,et al.  A New Perspective on Listeria monocytogenes Evolution , 2008, PLoS pathogens.

[102]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[103]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[104]  P. Francioli,et al.  Molecular typing methods and their discriminatory power. , 1998, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[105]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[106]  Marian C. Horzinek,et al.  Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus , 1988, Virology.

[107]  Genomic sequencing of SARS-CoV-2 , 2021 .

[108]  Fabian Sievers,et al.  Clustal Omega, accurate alignment of very large numbers of sequences. , 2014, Methods in molecular biology.

[109]  Claude-Alain H. Roten,et al.  Theoretical and practical advances in genome halving , 2004 .

[110]  A. Randolph,et al.  The acute respiratory distress syndrome. , 1996, New England Journal of Medicine.