A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt

[1]  A. Harris,et al.  Asteroid lightcurves: Can't tell a contact binary from a brick , 2020 .

[2]  H. Weaver,et al.  Shapes of TNOs from New Horizons Lightcurves , 2020 .

[3]  V. Al'i-Lagoa,et al.  Light curves of ten Centaurs from K2 measurements , 2020, Icarus.

[4]  T. Lauer,et al.  The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt , 2020, Science.

[5]  T. Lauer,et al.  The geology and geophysics of Kuiper Belt object (486958) Arrokoth , 2020, Science.

[6]  A. Thirouin,et al.  Trans-Neptunian binaries (2018) , 2020, 2002.04075.

[7]  Sean K. Moss,et al.  Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations , 2020, The Astronomical Journal.

[8]  A. Thirouin,et al.  From Centaurs to comets: 40 Years , 2019, The Trans-Neptunian Solar System.

[9]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[10]  M. Barucci,et al.  The Trans-Neptunian Solar System , 2020 .

[11]  C. Trujillo,et al.  Mutual orbit orientations of transneptunian binaries , 2019 .

[12]  J. Ortiz,et al.  The Changing Rotational Light-curve Amplitude of Varuna and Evidence for a Close-in Satellite , 2019, The Astrophysical Journal.

[13]  D. Tholen,et al.  Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons , 2019, The Astronomical Journal.

[14]  A. Youdin,et al.  Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability , 2019, Nature Astronomy.

[15]  M. C. Kochte,et al.  Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object , 2019, Science.

[16]  D. Vokrouhlický,et al.  Binary survival in the outer solar system , 2019, Icarus.

[17]  A. Gibbons Moderns said to mate with late-surviving Denisovans. , 2019, Science.

[18]  A. Thirouin,et al.  Light Curves and Rotational Properties of the Pristine Cold Classical Kuiper Belt Objects , 2019, The Astronomical Journal.

[19]  T. Lauer,et al.  The Mysterious Missing Light Curve of (486958) 2014 MU69, a Bi-Lobate Contact Binary Visited by New Horizons , 2019 .

[20]  M. Schwamb,et al.  OSSOS. XII. Variability Studies of 65 Trans-Neptunian Objects Using the Hyper Suprime-Cam , 2018, The Astrophysical Journal Supplement Series.

[21]  K. Noll,et al.  The HST lightcurve of (486958) 2014 MU69 , 2017, Icarus.

[22]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[23]  Alex Harrison Parker The Solar System Origins Legacy Survey , 2018 .

[24]  Keivan G. Stassun,et al.  A Discrete Set of Possible Transit Ephemerides for Two Long-period Gas Giants Orbiting HIP 41378 , 2018, The Astronomical Journal.

[25]  D. Vokrouhlický,et al.  Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan , 2018, Nature Astronomy.

[26]  A. Thirouin,et al.  The Plutino Population: An Abundance of Contact Binaries , 2018, 1804.09695.

[27]  Pavlos Protopapas,et al.  Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise , 2017, 1801.09732.

[28]  A. Thirouin,et al.  A Possible Dynamically Cold Classical Contact Binary: (126719) 2002 CC249 , 2017, 1710.10541.

[29]  G. Dudziński,et al.  The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation , 2017, Nature.

[30]  J. Ortiz,et al.  Size and Shape of Chariklo from Multi-epoch Stellar Occultations , 2017, 1708.08934.

[31]  A. Thirouin,et al.  2004 TT357: A Potential Contact Binary in the Trans-Neptunian Belt , 2017, 1707.09927.

[32]  M. Shepard Introduction to Planetary Photometry , 2017 .

[33]  Michael Marsset,et al.  All planetesimals born near the Kuiper belt formed as binaries , 2017, Nature Astronomy.

[34]  J. Ortiz,et al.  ROTATIONAL PROPERTIES OF THE HAUMEA FAMILY MEMBERS AND CANDIDATES: SHORT-TERM VARIABILITY , 2016, 1603.04406.

[35]  J. Prochaska,et al.  THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1 , 2016, 1602.06255.

[36]  P. Descamps Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies , 2016 .

[37]  G. Richards,et al.  ERRATUM: “MINING FOR DUST IN TYPE 1 QUASARS” (2015, AJ, 149, 203) , 2016 .

[38]  Michael Marsset,et al.  THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES , 2015, 1511.02895.

[39]  L. Kiss,et al.  PUSHING THE LIMITS: K2 OBSERVATIONS OF THE TRANS-NEPTUNIAN OBJECTS 2002 GV31 and (278361) 2007 JJ43 , 2015, 1504.03671.

[40]  P. Descamps Dumb-bell-shaped equilibrium figures for fiducial contact-binary asteroids and EKBOs , 2014, 1410.7962.

[41]  William M. Grundy,et al.  All Bright Cold Classical KBOs are Binary , 2014 .

[42]  Y. Jiménez-Teja,et al.  The Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity , 2014 .

[43]  J. Ortiz,et al.  Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt , 2014, 1407.1214.

[44]  W. Grundy,et al.  The rotational light curve of (79360) Sila–Nunam, an eclipsing binary in the Kuiper Belt , 2014, 1404.0244.

[45]  A. Thirouin Study of transneptunian objects using photometrics techniques and numerical simulations , 2014 .

[46]  D. Trilling,et al.  "TNOs are Cool": A survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 Centaurs , 2013, 1309.0946.

[47]  S. Sheppard,et al.  LIGHT CURVES OF 32 LARGE TRANSNEPTUNIAN OBJECTS , 2013, 1301.5791.

[48]  G. Carraro,et al.  Surface composition? and dynamical evolution of two retrograde objects in the outer solar system: 2008 YB3 and 2005 VD , 2013, 1301.2191.

[49]  A. Thirouin Study of trans-neptunian objects using photometric techniques and numerical simulations , 2013 .

[50]  T. Harrison,et al.  HERSCHEL OBSERVATIONS OF CATACLYSMIC VARIABLES , 2012, 1211.4841.

[51]  J. Ortiz,et al.  Short‐term variability of 10 trans‐Neptunian objects , 2012, 1207.2044.

[52]  P. Lacerda A CHANGE IN THE LIGHT CURVE OF KUIPER BELT CONTACT BINARY (139775) 2001 QG298 , 2011, 1107.3507.

[53]  A. Youdin,et al.  FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.

[54]  J. Ortiz,et al.  Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.

[55]  Mikko Kaasalainen,et al.  DAMIT: a database of asteroid models , 2010 .

[56]  Larry Denneau,et al.  The Thousand Asteroid Light Curve Survey , 2009, 0906.3339.

[57]  Joel Wm. Parker,et al.  THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2009, 1108.4836.

[58]  M. Barucci,et al.  Rotational properties of Centaurs and Trans-Neptunian Objects - Lightcurves and densities , 2008 .

[59]  Julio A. Fernández,et al.  The Scattered Disk: Origins, Dynamics, and End States , 2008 .

[60]  J. Ortiz,et al.  Photometric Lightcurves of Transneptunian Objects and Centaurs: Rotations, Shapes, and Densities , 2008 .

[61]  Karri Muinonen,et al.  Surface Properties of Kuiper Belt Objects and Centaurs from Photometry and Polarimetry , 2008 .

[62]  Scott S. Sheppard,et al.  Light Curves of Dwarf Plutonian Planets and other Large Kuiper Belt Objects: Their Rotations, Phase Functions, and Absolute Magnitudes , 2007, 0704.1636.

[63]  S. Ostro,et al.  Near-Earth Asteroid 2005 CR37: Radar Images and Photometry of a Candidate Contact Binary , 2006 .

[64]  G. Bernstein,et al.  Light Curves of 20-100 km Kuiper Belt Objects Using the Hubble Space Telescope , 2005, astro-ph/0510454.

[65]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[66]  D. Jewitt,et al.  Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries , 2004, astro-ph/0402277.

[67]  J. Kavelaars,et al.  A rotational light curve for the Kuiper belt object 1997 CV29 , 2004 .

[68]  J. Luu,et al.  On the detectability of lightcurves of Kuiper belt objects , 2004, astro-ph/0401300.

[69]  E. Chiang,et al.  On the Plutinos and Twotinos of the Kuiper Belt , 2002, astro-ph/0210440.

[70]  D. Jewitt,et al.  Time-resolved Photometry of Kuiper Belt Objects: Rotations, Shapes, and Phase Functions , 2002, astro-ph/0205392.

[71]  Rotation rates of Kuiper-belt objects from their light curves , 1999, Nature.

[72]  Alan W. Iarris Tumbling Asteroids , 1997 .

[73]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[74]  Robert Connelly,et al.  Convex-Profile Inversion of Asteroid Lightcurves: Theory and Applications , 1988 .

[75]  J. Veverka,et al.  The physical characteristics of satellite surfaces , 1986 .

[76]  Robert Connelly,et al.  Convex profiles from asteroid lightcurves , 1983 .

[77]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .

[78]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies , 1981 .

[79]  E. Tedesco,et al.  Albedo and color contrasts on asteroid surfaces , 1979 .

[80]  E. Tedesco Binary Asteroids: Evidence for Their Existence from Lightcurves , 1979, Science.

[81]  Joseph A. Burns,et al.  Asteroid Nutation Angles , 1973 .

[82]  J. L. Hodges,et al.  The significance probability of the smirnov two-sample test , 1958 .

[83]  H. Seeliger Zur Photometrie des Saturnringes. , 1884 .