A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt
暂无分享,去创建一个
T. Lauer | M. Showalter | H. Weaver | C. Lisse | W. Grundy | S. Robbins | S. Benecchi | J. Parker | D. Hamilton | A. Verbiscer | J. Spencer | S. Stern | C. Olkin | M. Buie | D. Kaufmann | D. Mehoke | T. Mehoke | S. Porter | K. Singer | H. Throop | A. Zangari | J. Keane
[1] A. Harris,et al. Asteroid lightcurves: Can't tell a contact binary from a brick , 2020 .
[2] H. Weaver,et al. Shapes of TNOs from New Horizons Lightcurves , 2020 .
[3] V. Al'i-Lagoa,et al. Light curves of ten Centaurs from K2 measurements , 2020, Icarus.
[4] T. Lauer,et al. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt , 2020, Science.
[5] T. Lauer,et al. The geology and geophysics of Kuiper Belt object (486958) Arrokoth , 2020, Science.
[6] A. Thirouin,et al. Trans-Neptunian binaries (2018) , 2020, 2002.04075.
[7] Sean K. Moss,et al. Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations , 2020, The Astronomical Journal.
[8] A. Thirouin,et al. From Centaurs to comets: 40 Years , 2019, The Trans-Neptunian Solar System.
[9] Nicolas Thomas,et al. TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.
[10] M. Barucci,et al. The Trans-Neptunian Solar System , 2020 .
[11] C. Trujillo,et al. Mutual orbit orientations of transneptunian binaries , 2019 .
[12] J. Ortiz,et al. The Changing Rotational Light-curve Amplitude of Varuna and Evidence for a Close-in Satellite , 2019, The Astrophysical Journal.
[13] D. Tholen,et al. Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons , 2019, The Astronomical Journal.
[14] A. Youdin,et al. Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability , 2019, Nature Astronomy.
[15] M. C. Kochte,et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object , 2019, Science.
[16] D. Vokrouhlický,et al. Binary survival in the outer solar system , 2019, Icarus.
[17] A. Gibbons. Moderns said to mate with late-surviving Denisovans. , 2019, Science.
[18] A. Thirouin,et al. Light Curves and Rotational Properties of the Pristine Cold Classical Kuiper Belt Objects , 2019, The Astronomical Journal.
[19] T. Lauer,et al. The Mysterious Missing Light Curve of (486958) 2014 MU69, a Bi-Lobate Contact Binary Visited by New Horizons , 2019 .
[20] M. Schwamb,et al. OSSOS. XII. Variability Studies of 65 Trans-Neptunian Objects Using the Hyper Suprime-Cam , 2018, The Astrophysical Journal Supplement Series.
[21] K. Noll,et al. The HST lightcurve of (486958) 2014 MU69 , 2017, Icarus.
[22] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[23] Alex Harrison Parker. The Solar System Origins Legacy Survey , 2018 .
[24] Keivan G. Stassun,et al. A Discrete Set of Possible Transit Ephemerides for Two Long-period Gas Giants Orbiting HIP 41378 , 2018, The Astronomical Journal.
[25] D. Vokrouhlický,et al. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan , 2018, Nature Astronomy.
[26] A. Thirouin,et al. The Plutino Population: An Abundance of Contact Binaries , 2018, 1804.09695.
[27] Pavlos Protopapas,et al. Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise , 2017, 1801.09732.
[28] A. Thirouin,et al. A Possible Dynamically Cold Classical Contact Binary: (126719) 2002 CC249 , 2017, 1710.10541.
[29] G. Dudziński,et al. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation , 2017, Nature.
[30] J. Ortiz,et al. Size and Shape of Chariklo from Multi-epoch Stellar Occultations , 2017, 1708.08934.
[31] A. Thirouin,et al. 2004 TT357: A Potential Contact Binary in the Trans-Neptunian Belt , 2017, 1707.09927.
[32] M. Shepard. Introduction to Planetary Photometry , 2017 .
[33] Michael Marsset,et al. All planetesimals born near the Kuiper belt formed as binaries , 2017, Nature Astronomy.
[34] J. Ortiz,et al. ROTATIONAL PROPERTIES OF THE HAUMEA FAMILY MEMBERS AND CANDIDATES: SHORT-TERM VARIABILITY , 2016, 1603.04406.
[35] J. Prochaska,et al. THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1 , 2016, 1602.06255.
[36] P. Descamps. Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies , 2016 .
[37] G. Richards,et al. ERRATUM: “MINING FOR DUST IN TYPE 1 QUASARS” (2015, AJ, 149, 203) , 2016 .
[38] Michael Marsset,et al. THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES , 2015, 1511.02895.
[39] L. Kiss,et al. PUSHING THE LIMITS: K2 OBSERVATIONS OF THE TRANS-NEPTUNIAN OBJECTS 2002 GV31 and (278361) 2007 JJ43 , 2015, 1504.03671.
[40] P. Descamps. Dumb-bell-shaped equilibrium figures for fiducial contact-binary asteroids and EKBOs , 2014, 1410.7962.
[41] William M. Grundy,et al. All Bright Cold Classical KBOs are Binary , 2014 .
[42] Y. Jiménez-Teja,et al. The Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity , 2014 .
[43] J. Ortiz,et al. Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt , 2014, 1407.1214.
[44] W. Grundy,et al. The rotational light curve of (79360) Sila–Nunam, an eclipsing binary in the Kuiper Belt , 2014, 1404.0244.
[45] A. Thirouin. Study of transneptunian objects using photometrics techniques and numerical simulations , 2014 .
[46] D. Trilling,et al. "TNOs are Cool": A survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 Centaurs , 2013, 1309.0946.
[47] S. Sheppard,et al. LIGHT CURVES OF 32 LARGE TRANSNEPTUNIAN OBJECTS , 2013, 1301.5791.
[48] G. Carraro,et al. Surface composition? and dynamical evolution of two retrograde objects in the outer solar system: 2008 YB3 and 2005 VD , 2013, 1301.2191.
[49] A. Thirouin. Study of trans-neptunian objects using photometric techniques and numerical simulations , 2013 .
[50] T. Harrison,et al. HERSCHEL OBSERVATIONS OF CATACLYSMIC VARIABLES , 2012, 1211.4841.
[51] J. Ortiz,et al. Short‐term variability of 10 trans‐Neptunian objects , 2012, 1207.2044.
[52] P. Lacerda. A CHANGE IN THE LIGHT CURVE OF KUIPER BELT CONTACT BINARY (139775) 2001 QG298 , 2011, 1107.3507.
[53] A. Youdin,et al. FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.
[54] J. Ortiz,et al. Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.
[55] Mikko Kaasalainen,et al. DAMIT: a database of asteroid models , 2010 .
[56] Larry Denneau,et al. The Thousand Asteroid Light Curve Survey , 2009, 0906.3339.
[57] Joel Wm. Parker,et al. THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2009, 1108.4836.
[58] M. Barucci,et al. Rotational properties of Centaurs and Trans-Neptunian Objects - Lightcurves and densities , 2008 .
[59] Julio A. Fernández,et al. The Scattered Disk: Origins, Dynamics, and End States , 2008 .
[60] J. Ortiz,et al. Photometric Lightcurves of Transneptunian Objects and Centaurs: Rotations, Shapes, and Densities , 2008 .
[61] Karri Muinonen,et al. Surface Properties of Kuiper Belt Objects and Centaurs from Photometry and Polarimetry , 2008 .
[62] Scott S. Sheppard,et al. Light Curves of Dwarf Plutonian Planets and other Large Kuiper Belt Objects: Their Rotations, Phase Functions, and Absolute Magnitudes , 2007, 0704.1636.
[63] S. Ostro,et al. Near-Earth Asteroid 2005 CR37: Radar Images and Photometry of a Candidate Contact Binary , 2006 .
[64] G. Bernstein,et al. Light Curves of 20-100 km Kuiper Belt Objects Using the Hubble Space Telescope , 2005, astro-ph/0510454.
[65] David E. Trilling,et al. The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .
[66] D. Jewitt,et al. Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries , 2004, astro-ph/0402277.
[67] J. Kavelaars,et al. A rotational light curve for the Kuiper belt object 1997 CV29 , 2004 .
[68] J. Luu,et al. On the detectability of lightcurves of Kuiper belt objects , 2004, astro-ph/0401300.
[69] E. Chiang,et al. On the Plutinos and Twotinos of the Kuiper Belt , 2002, astro-ph/0210440.
[70] D. Jewitt,et al. Time-resolved Photometry of Kuiper Belt Objects: Rotations, Shapes, and Phase Functions , 2002, astro-ph/0205392.
[71] Rotation rates of Kuiper-belt objects from their light curves , 1999, Nature.
[72] Alan W. Iarris. Tumbling Asteroids , 1997 .
[73] B. Hapke. Theory of reflectance and emittance spectroscopy , 1993 .
[74] Robert Connelly,et al. Convex-Profile Inversion of Asteroid Lightcurves: Theory and Applications , 1988 .
[75] J. Veverka,et al. The physical characteristics of satellite surfaces , 1986 .
[76] Robert Connelly,et al. Convex profiles from asteroid lightcurves , 1983 .
[77] Kari Lumme,et al. Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .
[78] Kari Lumme,et al. Radiative transfer in the surfaces of atmosphereless bodies , 1981 .
[79] E. Tedesco,et al. Albedo and color contrasts on asteroid surfaces , 1979 .
[80] E. Tedesco. Binary Asteroids: Evidence for Their Existence from Lightcurves , 1979, Science.
[81] Joseph A. Burns,et al. Asteroid Nutation Angles , 1973 .
[82] J. L. Hodges,et al. The significance probability of the smirnov two-sample test , 1958 .
[83] H. Seeliger. Zur Photometrie des Saturnringes. , 1884 .