Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks

[1]  C. Stoean,et al.  On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting , 2023, Energies.

[2]  D. Jovanović,et al.  Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator , 2022, Sustainability.

[3]  M. Zivkovic,et al.  Novel hybrid firefly algorithm: an application to enhance XGBoost tuning for intrusion detection classification , 2022, PeerJ Comput. Sci..

[4]  A. Gandomi,et al.  Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer , 2021, Expert Syst. Appl..

[5]  R. Stoean,et al.  Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization , 2021, Mathematics.

[6]  Javier Del Ser,et al.  A prescription of methodological guidelines for comparing bio-inspired optimization algorithms , 2021, Swarm Evol. Comput..

[7]  Enrico Zio,et al.  A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer , 2021, Appl. Soft Comput..

[8]  Wasim Ahmad,et al.  A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series , 2020 .

[9]  M. Khishe,et al.  Chimp optimization algorithm , 2020, Expert Syst. Appl..

[10]  Tome Eftimov,et al.  Multi-Objective Optimization Benchmarking Using DSCTool , 2020, Mathematics.

[11]  Huiling Chen,et al.  Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis , 2020, Appl. Soft Comput..

[12]  Weijun Hong,et al.  Deep ensemble learning based probabilistic load forecasting in smart grids , 2019 .

[13]  Jianchun Peng,et al.  A review of deep learning for renewable energy forecasting , 2019, Energy Conversion and Management.

[14]  Xiaoxia Qi,et al.  A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network , 2019, Applied Energy.

[15]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[16]  Aman Jantan,et al.  State-of-the-art in artificial neural network applications: A survey , 2018, Heliyon.

[17]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[18]  Yitao Liu,et al.  Deep learning based ensemble approach for probabilistic wind power forecasting , 2017 .

[19]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[20]  R. Inman,et al.  Solar forecasting methods for renewable energy integration , 2013 .

[21]  S Roberts,et al.  Gaussian processes for time-series modelling , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Yudong Wang,et al.  Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models? , 2012 .

[23]  L. Suganthi,et al.  Energy models for demand forecasting—A review , 2012 .

[24]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[25]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[26]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[27]  D. Sheskin Handbook of Parametric and Nonparametric Statistical Procedures: Third Edition , 2000 .

[28]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[29]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[30]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[31]  S. Shapiro,et al.  An Approximate Analysis of Variance Test for Normality , 1972 .

[32]  G. Glass Testing Homogeneity of Variances , 1966 .

[33]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[34]  G. Semanišin,et al.  Automatic Reactive Power Classification Based on Selected Machine Learning Methods , 2023, ICAART.

[35]  Viorel Badescu,et al.  A current perspective on the accuracy of incoming solar energy forecasting , 2019, Progress in Energy and Combustion Science.

[36]  Rob J Hyndman,et al.  25 years of time series forecasting , 2006 .

[37]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .